Search results

Search for "single molecule" in Full Text gives 157 result(s) in Beilstein Journal of Nanotechnology.

(Metallo)porphyrins for potential materials science applications

  • Lars Smykalla,
  • Carola Mende,
  • Michael Fronk,
  • Pablo F. Siles,
  • Michael Hietschold,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1786–1800, doi:10.3762/bjnano.8.180

Graphical Abstract
  • the integration of single-molecule magnets into spintronic or quantum computing devices [12]. For the design of such devices the knowledge of the photon energy at which the MOKE is largest in magnitude is of crucial importance. The number of reports on spectroscopic MOKE investigations are very
  • (111). Manipulation of the electronic structure of H2TPP(OH)4 on Au(111) [45]: Molecules with two possible states, e.g., of conductivity, can be used as single-molecule switches. This functionality could be applied in nano-scaled molecular-based memory devices or logic gates [64], However, one must be
PDF
Album
Review
Published 29 Aug 2017

Transport characteristics of a silicene nanoribbon on Ag(110)

  • Ryoichi Hiraoka,
  • Chun-Liang Lin,
  • Kotaro Nakamura,
  • Ryo Nagao,
  • Maki Kawai,
  • Ryuichi Arafune and
  • Noriaki Takagi

Beilstein J. Nanotechnol. 2017, 8, 1699–1704, doi:10.3762/bjnano.8.170

Graphical Abstract
  • discuss the origin of the peak as it relates to the SiNR. Keywords: nanojunction; nanoribbon; scanning tunnelling microscopy; silicene; transport; Introduction The electronic transport characteristics of nanomaterials from a single molecule, nanowires, nanotubes, and nanoribbons to two-dimensional (2D
PDF
Album
Full Research Paper
Published 16 Aug 2017

Spin-chemistry concepts for spintronics scientists

  • Konstantin L. Ivanov,
  • Alexander Wagenpfahl,
  • Carsten Deibel and
  • Jörg Matysik

Beilstein J. Nanotechnol. 2017, 8, 1427–1445, doi:10.3762/bjnano.8.143

Graphical Abstract
  • (Figure 3). For radical pairs, the transition between T+ = αα and T− = ββ is considered to be a double-quantum transition and is forbidden by optical means as well as in magnetic resonance. Such triplet states do not only occur in radical pairs but also by ISC at a single molecule mostly having one free
PDF
Album
Review
Published 11 Jul 2017

Adsorption and electronic properties of pentacene on thin dielectric decoupling layers

  • Sebastian Koslowski,
  • Daniel Rosenblatt,
  • Alexander Kabakchiev,
  • Klaus Kuhnke,
  • Klaus Kern and
  • Uta Schlickum

Beilstein J. Nanotechnol. 2017, 8, 1388–1395, doi:10.3762/bjnano.8.140

Graphical Abstract
  • . To understand the principles behind single-molecule devices, the fundamental physics of molecule-metal junctions need to be well understood and controlled. Scanning tunneling microscopy (STM) is particularly suited to not only study the structure of an adsorbed (organic) molecule on the atomic scale
PDF
Album
Full Research Paper
Published 06 Jul 2017

Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands

  • Martin Börner,
  • Laura Blömer,
  • Marcus Kischel,
  • Peter Richter,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Pablo F. Siles,
  • Maria E. N. Fuentes,
  • Carlos C. B. Bufon,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Daniel Breite,
  • Bernd Abel and
  • Berthold Kersting

Beilstein J. Nanotechnol. 2017, 8, 1375–1387, doi:10.3762/bjnano.8.139

Graphical Abstract
  • area of molecular spintronice [8][9][10][11]. For a review concerning the organization of electronically bistable molecule or molecular switches on surfaces see [4]. The deposition of single molecule magnets (SMMs) has received increased attention [12][13][14] and several strategies have been designed
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2017

Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins

  • Rasha K. Al-Shewiki,
  • Carola Mende,
  • Roy Buschbeck,
  • Pablo F. Siles,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1191–1204, doi:10.3762/bjnano.8.121

Graphical Abstract
  • of the molecules integrated into spintronic devices ranges from purely diamagnetic molecules to individual single molecule magnets (SMMs) [4]. Among such molecules metalloporphyrins are very promising in terms of diverse applications [4]. Recently, we reported on the deposition of thin films of
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2017

Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy

  • Sebastian Schimmel,
  • Zhixiang Sun,
  • Danny Baumann,
  • Denis Krylov,
  • Nataliya Samoylova,
  • Alexey Popov,
  • Bernd Büchner and
  • Christian Hess

Beilstein J. Nanotechnol. 2017, 8, 1127–1134, doi:10.3762/bjnano.8.114

Graphical Abstract
  • exhibit a sufficiently high mobility on the Au(111)-surface. In this case annealing initiated surface diffusion of the fullerenes on the terraces and along the lower level of step edges. Thus, they could form 1D single molecule lines at step edges (Figure 2a). These molecular lines seem to play an
PDF
Album
Full Research Paper
Published 23 May 2017

Stable Au–C bonds to the substrate for fullerene-based nanostructures

  • Taras Chutora,
  • Jesús Redondo,
  • Bruno de la Torre,
  • Martin Švec,
  • Pavel Jelínek and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 1073–1079, doi:10.3762/bjnano.8.109

Graphical Abstract
  • vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature. Keywords: Au–C bonds; density functional theory (DFT); fullerenes; scanning tunneling microscopy (STM); sputtering; Introduction In single-molecule electronics, the active element in an
  • in 1985 [5], fullerenes have played an important role in molecular surface science, organic photovoltaics and single-molecule electronics. Fullerenes can be deposited on a series of metallic and semiconducting substrates [6][7][8]. In molecular transport, they have been used both as target molecules
  • spread of electronic coupling and conductance values [9][10][11][12]. For an archetypal electrode material in single molecule transport studies such as Au, however, their high mobility at room temperature can lead to a large spread in conductance or to problems in trapping the molecule at the interface
PDF
Album
Full Research Paper
Published 17 May 2017

Bio-inspired micro-to-nanoporous polymers with tunable stiffness

  • Julia Syurik,
  • Ruth Schwaiger,
  • Prerna Sudera,
  • Stephan Weyand,
  • Siegbert Johnsen,
  • Gabriele Wiegand and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 906–914, doi:10.3762/bjnano.8.92

Graphical Abstract
  • only shorter polymeric chains shortened further, while the longer ones remained intact. The obtained data allows us to estimate the size of the average macromolecule in PMMA. Based on the Mw value of 750.000 g/mol and a weight of a single molecule of 100 g/mol, each PMMA chain contains on average 7500
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2017

Modeling adsorption of brominated, chlorinated and mixed bromo/chloro-dibenzo-p-dioxins on C60 fullerene using Nano-QSPR

  • Piotr Urbaszek,
  • Agnieszka Gajewicz,
  • Celina Sikorska,
  • Maciej Haranczyk and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 752–761, doi:10.3762/bjnano.8.78

Graphical Abstract
  • (comparable to the sum of single molecule energies for calculations in a gas phase (at 298.15 K)) may seem doubtful according to Hess’s law (Equation 2). Additionally, it should be highlighted that all of the PXDD@C60 materials are considered to be thermodynamically stable systems, and all of the Hessian
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • single molecule resolution, has been demonstrated with graphene-based devices under laboratory conditions [1][2][3]. However, in order to develop gas sensing applications working under real conditions, much effort has been dedicated to modification of graphene for improving its gas sensing
PDF
Album
Full Research Paper
Published 07 Mar 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • graphene is very sensitive to the adsorption of charged/polar species at or near its surface – a peculiarity particularly suitable for chemical/biological sensing. As an example, gas sensors with single molecule sensitivity have been initially demonstrated using high quality, exfoliated graphene from
PDF
Album
Full Research Paper
Published 20 Feb 2017

Selective photodissociation of tailored molecular tags as a tool for quantum optics

  • Ugur Sezer,
  • Philipp Geyer,
  • Moritz Kriegleder,
  • Maxime Debiossac,
  • Armin Shayeghi,
  • Markus Arndt,
  • Lukas Felix and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2017, 8, 325–333, doi:10.3762/bjnano.8.35

Graphical Abstract
  • clusters [10][11][12][13][14][15][16], up to tailored porphyrin derivatives as massive as 10 kDa [17]. In these experiments, every single molecule contained 810 atoms and yet it still needed to be described by a quantum wave function with a de Broglie wavelength of 300–500 fm. The molecular coherence
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2017

Flexible photonic crystal membranes with nanoparticle high refractive index layers

  • Torben Karrock,
  • Moritz Paulsen and
  • Martina Gerken

Beilstein J. Nanotechnol. 2017, 8, 203–209, doi:10.3762/bjnano.8.22

Graphical Abstract
  • gratings properties, the waveguide properties, and the angle of incidence. Many different fabrication approaches have been presented and recent publications show high potential for future products, including multiparametric label-free biosensing [4], photonic crystal enhanced microscopy [5], single
  • molecule trapping [6], and surface emitting lasers [7]. Recently, flexible photonic crystal structures with elastomers as substrates have been investigated as strain sensors [8], for enhanced light out-coupling in flexible organic light emitting diodes [9][10], for photonic paper [11], and for pressure
PDF
Album
Full Research Paper
Published 20 Jan 2017

Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

  • Piotr Olszowski,
  • Lukasz Zajac,
  • Szymon Godlewski,
  • Bartosz Such,
  • Rémy Pawlak,
  • Antoine Hinaut,
  • Res Jöhr,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2017, 8, 99–107, doi:10.3762/bjnano.8.11

Graphical Abstract
  • , that is, at angles of +44 ± 2° and −44 ± 2° with respect to the [01−1] direction of the substrate reconstruction rows. Furthermore, the close packed single molecule rows extending along the [01−1] are very seldom seen at the island edges, mostly cutting the sharp edges of the rectangles. Since the
  • molecular rows essentially define the shape of the islands, in the case of CuPc, we predominantly observe almost regular rectangles, whereas ZnPc islands have edges aligned along paired molecule rows as well as single molecule chains, and often at more irregular directions perpendicular to the terminating
PDF
Album
Full Research Paper
Published 11 Jan 2017

Controlled supramolecular structure of guanosine monophosphate in the interlayer space of layered double hydroxide

  • Gyeong-Hyeon Gwak,
  • Istvan Kocsis,
  • Yves-Marie Legrand,
  • Mihail Barboiu and
  • Jae-Min Oh

Beilstein J. Nanotechnol. 2016, 7, 1928–1935, doi:10.3762/bjnano.7.184

Graphical Abstract
  • showed the evolution of the (003) peak at 7° (Figure 7a, line b), which corresponded to the interlayer space of single molecule arrangement. After two days, the (003) peak corresponding to the ribbon orientation almost disappeared and the peak at 7° became dominant, implying that the GL-R was converted
  • :2 for 1 day. (a) 100 °C, (b) 80 °C, (c) 60 °C, (d) 40 °C, (e) 20 °C. Schematic illustrations for interlayer structure of GMP/LDH hybrids according to molecular arrangement of GMPs: (a) single molecule arrangement (GL-S) and (b) ribbon II arrangement (GL-R). XRD patterns of (a) pristine MgAl-NO3-LDH
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2016

Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

  • Jakub S. Prauzner-Bechcicki,
  • Lukasz Zajac,
  • Piotr Olszowski,
  • Res Jöhr,
  • Antoine Hinaut,
  • Thilo Glatzel,
  • Bartosz Such,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2016, 7, 1642–1653, doi:10.3762/bjnano.7.156

Graphical Abstract
  • NEXAFS measurements. The STM image of a single molecule exhibits two-fold symmetry [52][53]. Molecules are sitting atop the oxygen rows with a common azimuthal orientation in a saddle-shape conformation, which has been identified as the N–N axis parallel to the [001] direction. The most favoured
  • PTCDA, phthalocyanine and porphyrin molecules share similar single-molecule adsorption geometries. The molecules tend to grow with their molecular plane nearly parallel to the substrate, as long as they do not possess specific anchor groups, e.g., –COOH. Each of the discussed molecular species possesses
PDF
Album
Commentary
Published 09 Nov 2016

False positives and false negatives measure less than 0.001% in labeling ssDNA with osmium tetroxide 2,2’-bipyridine

  • Anastassia Kanavarioti

Beilstein J. Nanotechnol. 2016, 7, 1434–1446, doi:10.3762/bjnano.7.135

Graphical Abstract
  • ) method [4]. Nevertheless, SBS limitations [5], and the need for single-molecule sequencing at a fast speed, low cost, and accurate base-calling has led to the exploration of nanopore-based solutions and other platforms [6][7]. Physical scientists embraced nanopore technology for a plethora of
  • ), and the Ph29 connector channel have been investigated as single-molecule sensing devices for ssDNA, RNA, dsDNA, and proteins [11][12][13]. The concept of nanopore-based sequencing, patented in 1998 [14], is based on applying a potential across an open pore embedded within an insulating membrane that
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2016

Role of solvents in the electronic transport properties of single-molecule junctions

  • Katharina Luka-Guth,
  • Sebastian Hambsch,
  • Andreas Bloch,
  • Philipp Ehrenreich,
  • Bernd Michael Briechle,
  • Filip Kilibarda,
  • Torsten Sendler,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Artur Erbe and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 1055–1067, doi:10.3762/bjnano.7.99

Graphical Abstract
  • solvents that are commonly used in the field of molecular electronics (ethanol, toluene, mesitylene, 1,2,4-trichlorobenzene, isopropanol, toluene/tetrahydrofuran mixtures) for the study of single-molecule contacts of functional molecules. We present measurements of the conductance as a function of gap
  • width, conductance histograms as well as current–voltage characteristics of narrow gaps and discuss them in terms of the Simmons model, which is the standard model for describing transport via tunnel barriers, and the resonant single-level model, often applied to single-molecule junctions. One of our
  • controllable break junction; molecular electronics; polar solvent; single-molecule junctions; Introduction The electronic transport properties of single-molecule junctions are actively investigated with the aim to utilize such junctions as functional building blocks in electronic devices [1][2][3][4][5][6][7
PDF
Album
Full Research Paper
Published 22 Jul 2016

Advanced atomic force microscopy techniques III

  • Thilo Glatzel and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2016, 7, 1052–1054, doi:10.3762/bjnano.7.98

Graphical Abstract
  • -cell force spectroscopy is used by a biophysics group around Jonne Helenius to quantify the contribution of cell adhesion to specific substrates at both the cell and single molecule level [19]. Furthermore, physico-mechanical properties of intestinal cells were elucidated by force curve measurements by
  • frequency tangential excitation [25]. On the other hand, force spectroscopy and advanced imaging and analysis techniques form a major part of this Thematic Series. For all AFM experiments the tip condition is one of the most critical parameters, Fei Long et al. presented a method for single-molecule probe
PDF
Editorial
Published 21 Jul 2016

Phenalenyl-based mononuclear dysprosium complexes

  • Yanhua Lan,
  • Andrea Magri,
  • Olaf Fuhr and
  • Mario Ruben

Beilstein J. Nanotechnol. 2016, 7, 995–1009, doi:10.3762/bjnano.7.92

Graphical Abstract
  • , paramagnetic 1H NMR, MALDI-TOF mass spectrometry, UV–vis spectrophotometry and magnetic measurements. Both static (dc) and dynamic (ac) magnetic properties of these complexes have been investigated, showing slow relaxation of magnetization, indicative of single molecule magnet (SMM) behavior. Attempts to
  • sublimation onto surfaces, an important prerequisite for ongoing studies in molecular spintronics. Keywords: coordination complexes; dysprosium; magnetism; mononuclear; phenalenyl-based; Introduction In the pioneering studies of next-generation information processing devices, single-molecule magnets (SMMs
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2016

Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

  • Matthias Bieligmeyer,
  • Franjo Artukovic,
  • Stephan Nussberger,
  • Thomas Hirth,
  • Thomas Schiestel and
  • Michaela Müller

Beilstein J. Nanotechnol. 2016, 7, 881–892, doi:10.3762/bjnano.7.80

Graphical Abstract
  • lipid membranes with high fidelity and selectivity. In the field of biotechnology, they are particularly attractive for single-molecule DNA sequencing [1][2][3][4][5] and stochastic sensing of ions and macromolecules [6][7][8][9][10]. The well-defined dimensions of the protein pores furthermore offer a
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2016

Optical absorption signature of a self-assembled dye monolayer on graphene

  • Tessnim Sghaier,
  • Sylvain Le Liepvre,
  • Céline Fiorini,
  • Ludovic Douillard and
  • Fabrice Charra

Beilstein J. Nanotechnol. 2016, 7, 862–868, doi:10.3762/bjnano.7.78

Graphical Abstract
  • “surface only” nature [22][23] and has been applied to tailor its band structure [24] or its work function [25][26] with a monolayer of PTCDI and similar molecules, which can be laterally patterned [27] or even manipulated at the single-molecule level [28]. Beyond H-bond-steered organizations [29], a high
PDF
Album
Letter
Published 14 Jun 2016

Thermo-voltage measurements of atomic contacts at low temperature

  • Ayelet Ofarim,
  • Bastian Kopp,
  • Thomas Möller,
  • León Martin,
  • Johannes Boneberg,
  • Paul Leiderer and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 767–775, doi:10.3762/bjnano.7.68

Graphical Abstract
  • , which are partially not explored thoroughly yet. This includes solid-state semiconducting devices [1] and organic semiconductors, ultrathin metal wires or single-molecule junctions. In particular, the thermopower has become a property of utmost interest because it is decisive for the conversion of
  • system [5][6]. S can adopt both signs and typical values for single-atom and single-molecule contacts range from nV per K to several µV per K. So far several approaches for thermo-voltage measurements of atomic-scale devices have been performed successfully [7][8][9][10][11][12][13][14][15][16][17
  • -electric transport properties of BDT single-molecule junctions are extremely sensitive to the configuration between the two metal leads. The temperature difference across the junction was not measured but calculated using a simulated temperature profile. We have shown recently [19] that a thermo-voltage of
PDF
Album
Full Research Paper
Published 30 May 2016

Rigid multipodal platforms for metal surfaces

  • Michal Valášek,
  • Marcin Lindner and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2016, 7, 374–405, doi:10.3762/bjnano.7.34

Graphical Abstract
  • molecules due to the increased footprint, as well as restrict tilting of the functional termini with respect to the metal surface. These platforms are thus ideally suited to tune important properties of the molecule–metal interface. On a single-molecule level, several of these platforms enable the control
  • properties of single-molecule devices becomes possible, which is of paramount importance for molecular devices. Furthermore, not only the effect of anchoring groups, but also accurate measurements of the molecular conductance over the functional core and molecular wire is crucial to fulfill requirements for
  • -defined spatial arrangement of the tailor-made functional molecules on a solid surface is of paramount importance in the design of single-molecule devices. So far, many anchoring groups such as thiols (–SH) [26][27][28][29], amines (–NH2) [15][26][30], phosphines [31], pyridines [9][32][33][34][35
PDF
Album
Review
Published 08 Mar 2016
Other Beilstein-Institut Open Science Activities