Search results

Search for "spectroscopy" in Full Text gives 1360 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Ultrablack color in velvet ant cuticle

  • Vinicius Marques Lopez,
  • Wencke Krings,
  • Juliana Reis Machado,
  • Stanislav Gorb and
  • Rhainer Guillermo-Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1554–1565, doi:10.3762/bjnano.15.122

Graphical Abstract
  • spectroscopy, we conducted a comprehensive analysis of the cuticle to elucidate its unique optical properties. SEM imaging provided a detailed surface morphology, while TEM provided insights into the internal structure. CLSM showed that the cuticle exhibits no autofluorescence. Our findings reveal a highly
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2024

Electrochemical nanostructured CuBTC/FeBTC MOF composite sensor for enrofloxacin detection

  • Thi Kim Ngan Nguyen,
  • Tien Dat Doan,
  • Huy Hieu Luu,
  • Hoang Anh Nguyen,
  • Thi Thu Ha Vu,
  • Quang Hai Tran,
  • Ha Tran Nguyen,
  • Thanh Binh Dang,
  • Thi Hai Yen Pham and
  • Mai Ha Hoang

Beilstein J. Nanotechnol. 2024, 15, 1522–1535, doi:10.3762/bjnano.15.120

Graphical Abstract
  • method and characterized using various techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and X-ray photoelectron spectroscopy. The MOF mixture exhibited a particle size ranging from 40 to 100 nm, a high surface area of 1147 m2/g, a pore
  • in the electrode material. Electrochemical property The Nyquist diagrams in Figure 5 were obtained using electrochemical impedance spectroscopy (EIS) in a 0.1 M KCl solution containing 5 mM [Fe(CN)6]3−/4−. Based on the EIS analysis, the charge transfer resistances (Rct) of CPE, CuBTC@CPE, and (Cu)(Fe
  • Informatics in Chemistry, Institute of Chemistry, Vietnam Academy of Science and Technology). Electrochemical impedance spectroscopy (EIS) was performed by using an Autolab PGSTAT 302 in a frequency range of 100 kHz to 0.01 Hz. A three-electrode electrochemical setup was used including a platinum wire counter
PDF
Album
Full Research Paper
Published 28 Nov 2024

Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model

  • Aram Shirinyan and
  • Yuriy Bilogorodskyy

Beilstein J. Nanotechnol. 2024, 15, 1453–1472, doi:10.3762/bjnano.15.117

Graphical Abstract
PDF
Album
Full Research Paper
Published 21 Nov 2024

Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study

  • Kamal Kumar,
  • Nora H. de Leeuw,
  • Jost Adam and
  • Abhishek Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 1440–1452, doi:10.3762/bjnano.15.116

Graphical Abstract
  • ), and density functional theory (DFT) study suggests that the hydrogenation of graphene with atomic hydrogen leads to the formation of graphone [8]. The full hydrogenation of graphene (graphane) was experimentally obtained by Elias et al., and their TEM and Raman spectroscopy results evidence the
  • using different experimental techniques is available. Ni et al. synthesized graphene on a polyethylene terephthalate (PET) substrate and studied the effect of uniaxial strain through Raman spectroscopy [30]. They stretched PET in one direction and found a redshift in the D and G bands for a single
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2024

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • under steady-state conditions. X-ray photoelectron spectroscopy (XPS) and mass spectrometry data from monolayer thick films of Pt(CO)2Cl2 and Pt(CO)2Br2 exposed to 3 keV Ar+, He+, and H2+ ions indicate that deposition is initiated by the desorption of both CO ligands, a process ascribed to momentum
  • transformations of precursor thin films. In this approach, the precursor is adsorbed onto a cooled substrate to form 1–2 nm thin films. The effects of ion beam exposure on the thin films are characterized by X-ray photoelectron spectroscopy to identify changes in the films’ composition and chemical environment
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • lower region of the microcavity and an additional eight bilayers in the upper area. The bottom DBR was coated with LFO using the spin-coating technique. Ultrafast transient-absorption spectroscopy was used to measure charging dynamics by exciting the microcavity with a pump pulse and observing the
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • down to collect white products formed on Si substrates. They were characterized by scanning electron microscopy (SEM, JEOL-6330F) and energy-dispersive X-ray (EDX) spectroscopy. Renishaw’s RS and PL spectrometers operating with laser wavelengths of 488 and 325 nm were also employed to study phonon
  • morphological characterizations, we performed RS spectroscopy to check the crystal structure and quality of fabricated ZnO nanostructures. Figure 7 shows RS spectra of typical samples (namely R1, P, Pi, T2, T3, M, and S labelled in the SEM images) recorded in the wavenumber range of 250–800 cm−1. All spectra
PDF
Album
Full Research Paper
Published 11 Nov 2024

A biomimetic approach towards a universal slippery liquid infused surface coating

  • Ryan A. Faase,
  • Madeleine H. Hummel,
  • AnneMarie V. Hasbrook,
  • Andrew P. Carpenter and
  • Joe E. Baio

Beilstein J. Nanotechnol. 2024, 15, 1376–1389, doi:10.3762/bjnano.15.111

Graphical Abstract
  • spectroscopy. Finally, ordering of specific chemical groups within our PDA SLIPS layer was determined via sum frequency generation spectroscopy. The hemocompatibility of our new PDA-based SLIPS coating was then evaluated by tracking FXII activation, fibrin generation time, clot morphology, and platelet
  • force microscopy (AFM), sum frequency generation spectroscopy (SFG), and X-ray photoelectron spectroscopy (XPS). Measuring static water contact angles is a straightforward method to determine the relative wettability of a material and allows for a quick check if our surface modifications were successful
  • processing and analysis of the collected scans included a lowpass filter and took place in the “NanoScope analysis” software. Sum frequency generation vibrational spectroscopy The SFG setup used an EKSLPA Nd:YAG laser operated at 50 Hz to generate a fixed visible (532 nm−1) and tunable infrared beam (1000
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2024

Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication

  • Muhammed Taha Durmus and
  • Ebru Bozkurt

Beilstein J. Nanotechnol. 2024, 15, 1369–1375, doi:10.3762/bjnano.15.110

Graphical Abstract
  • synthesis, which is commonly used in the literature. TEM and zeta potential measurements were used to determine morphology and sizes of the CDs, and XRD, XPS, and FTIR and micro-Raman spectroscopy were used for structural characterization. Optical characterization of the CDs was done by absorption and
  • Cary Eclipse fluorescence spectrophotometer were used for transmission electron microscopy (TEM), zeta potential measurements, X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, PVD thermal evaporation, scanning
  • electron microscopy (SEM), I–V/C–V measurements, UV–vis spectroscopy, and steady-state fluorescence spectroscopy, respectively. CDs synthesis 2.5 g of the powdered Rheum ribes plant was placed in an autoclave bottle, and 50 mL of pure water was added to the bottle. This aqueous solution was placed in an
PDF
Album
Full Research Paper
Published 07 Nov 2024

Out-of-plane polarization induces a picosecond photoresponse in rhombohedral stacked bilayer WSe2

  • Guixian Liu,
  • Yufan Wang,
  • Zhoujuan Xu,
  • Zhouxiaosong Zeng,
  • Lanyu Huang,
  • Cuihuan Ge and
  • Xiao Wang

Beilstein J. Nanotechnol. 2024, 15, 1362–1368, doi:10.3762/bjnano.15.109

Graphical Abstract
  • . To enrich the basic characterizations of WSe2, we conducted Raman spectroscopy and scanning electron microscopy (SEM) measurements (Supporting Information File 1, Note 5). The broken symmetry leads to an asymmetric distribution of photogenerated carriers, resulting in a non-zero photocurrent even
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • spectroscopy, atomic emission spectroscopy, surface-enhanced Raman scattering, electrochemical, fluorescence, and colorimetric methods [18][19]. Catalytic hydrogenation is the preferred method for the conversion of 4-nitrophenol to 4-aminophenol, which is less toxic [20]. However, the conversion process is
  • used for measurement. The functionalization of AgNS, AuNS, AuNR1, and AuNR2 with CTAB was validated through Fourier-transform infrared spectroscopy (Thermo Scientific, Nicolet iS5, USA). 10 mg of the air-dried nanoparticles were placed over a diamond and measured in the range of 400–4000 cm−1
  • TEM analyses Physicochemical characterization was performed using optical spectroscopy, DLS, FTIR, XRD, and TEM analyses. Figure 2a shows the synthesized isotropic silver and gold nanospheres with plasmon bands at 410 nm (AgNS) and 525 nm (AuNS). The anisotropic tunable gold nanorods with longitudinal
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans

  • Romana Petry,
  • James M. de Almeida,
  • Francine Côa,
  • Felipe Crasto de Lima,
  • Diego Stéfani T. Martinez and
  • Adalberto Fazzio

Beilstein J. Nanotechnol. 2024, 15, 1297–1311, doi:10.3762/bjnano.15.105

Graphical Abstract
  • complete characterization of the GO sample is available in [36]. Atomic force microscopy (AFM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to assess size, morphology, number of layers, and surface chemistry of GO. The GO sample used in this study consists of single layers with
  • composition analyzed by X-ray photoelectron spectroscopy (XPS) is 68% of carbon and 32% of oxygen. The functional groups and bonds of carbon are distributed among epoxy/hydroxy (C–O) (52%), carboxyl/esters (C=O) (9.4%), and π–π* (4.2%) moieties, besides graphitic/aromatic carbon (C sp2) (5.7%) and aliphatic
  • according to data reported in the literature for graphene materials [38], to 2.0 nm in double-layer spots caused by the incubation in the EPA medium. Spectroscopy characterizations Spectroscopy analysis showed the main chemical groups on the material’s surface, and how their composition changed in the
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2024

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  • methods. Fourier-transform infrared spectroscopy Figure 1 shows the FTIR spectra of as-prepared gels obtained by SG and MW. The broad band in the 3600–2500 cm−1 region can be assigned to overlapping characteristic vibrations of C–H, N–H, and O–H bonds. The small bands at 2972, 2866, and 2747 cm−1 are
  • the SG sample (Figure 4a), while larger, well-defined prismatic particles are found in the MW sample. EDX analysis highlights the presence of Mn in both samples. Fourier-transform infrared spectroscopy Figure 5 presents the FTIR spectra of the thermally treated samples, revealing the absence of bands
  • parallel in Figure 7. The insets show a wide pore size distribution reaching 120 nm and pore width maxima located in the mesoporosity area for both samples (40 nm for SG and 35–45 nm for MW). Similar textural features for SG and MW samples are presented in Table 3. UV–vis spectroscopy The recorded UV–vis
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • g·mL−1). The reduction process was initiated through heating the mixture and visually confirmed by a change in color of the reaction mixture indicating the formation of AuNPs on the GluN/Alg composite. UV–vis spectroscopy within the range of 300 to 600 nm was employed to monitor this process
  • temperature, and the reaction time, by using UV–vis spectroscopy. Changes in the physicochemical properties, such as morphology and particle size of AuNPs, were monitored through absorbance and the λmax values of the surface plasmon resonance (SPR) band. Figure 2 illustrates the impact of synthesis conditions
  • within the composite. The highly negative zeta potentials of both nanocomposites indicated their high stability in the aqueous solution. The functional groups present in the nanocomposite were identified through FTIR spectroscopy, with the blank nanocomposite serving as a reference for the analysis of
PDF
Album
Full Research Paper
Published 04 Oct 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • . Characterizations of the synthesized nanostructures were carried out including zeta potential measurements, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The loading capacity of the nanopolymers for DOX was investigated, and encapsulation and release studies were carried out. In a final
  • Centrifugen, USA). The precipitated nanostructures were redispersed in distilled water utilizing a sonicator and dried with a lyophilizer. Then, the nanostructures were stored at 4 °C. Characterization studies Functional group analysis was carried out by Fourier-transform infrared (FTIR) spectroscopy
PDF
Album
Full Research Paper
Published 26 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • in a field-emission Hitachi S-4800 SEM. The chemical composition of the deposits was determined using energy-dispersive X-ray (EDX) spectroscopy using a Hitachi S-4800 SEM equipped with an EDAX Genesis 4000 detector and a Tescan Mira dual-beam instrument with an EDAX EDX system. To prove for
  • the formation mechanism of the interfacial silver layer deserves further in-depth studies, which are beyond the scope of this article. These studies would involve surface science approaches using mass spectrometry and/or other spectroscopic techniques, such as X-ray photoelectron spectroscopy, and
  • Raman or FTIR spectroscopy [5][8][37], to study the nature of the desorbed and incorporated molecular fragments ideally during the irradiation process. Up to now, only silver pentafluoropriopionate allowed for three-dimensional growth [30]. However, the use of this compound required relatively high
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • a monolayer of gas coverage. The surface area of nanomaterials can also be determined by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy [64][65]. Zeta potential: The zeta potential of nanoparticles can be calculated from the electrophoretic mobility of particles in a particular
  • solvent using the Doppler approach, which measures particle velocity as a function of voltage. The determination of the zeta potential is crucial in understanding the mechanism of drug–nanoparticle interactions [66]. In addition to the methods described above, Fourier-transform infrared spectroscopy is
PDF
Album
Review
Published 22 Aug 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • -dispersive X-ray spectroscopy. Furthermore, NPs of various sizes ranging from 6 to 35 nm were loaded onto a filter paper by a simple and effective drop-casting approach to achieve flexible surface-enhanced Raman spectroscopy (SERS) substrates/sensors. These substrates were tested using a simple, portable
  • interest in many applications, such as photoelectronic devices, biochemical sensors, and surface-enhanced Raman spectroscopy (SERS) substrates, due to their high purity NPs as well as an easy method for altering the structures, NPs/NSs sizes, and morphology by tuning the laser parameters and surrounding
  • imaging due to the nonconductive nature of the FP substrate. FESEM energy-dispersive X-ray spectroscopy (EDX) mapping investigations were conducted on Ag/Au alloy NPs deposited on a Si substrate by drop casting 10 µL to avoid confusion in the data caused by the Au coating. Transmission electron microscopy
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • spectroscopy. The authors observed a drastically reduction of passivation in the coated samples compared with the original specimens. Similar results can be achieved by using CNT-containing polymeric layers [163] or CNT-based hydroxyapatite coatings [164][165]. Remarkably, neat CNTs coatings are not the best
PDF
Album
Review
Published 16 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • [27][28], surface-enhanced Raman spectroscopy [29][30], microfluidic-coupled biochip [31], electrochemical [32], and field-effect transistor (FET)-based biosensors [33]. Biosensors offer several distinct benefits for virus recognition, including higher selectivity through improved target receptors and
PDF
Album
Review
Published 06 Aug 2024

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • and yield of the as-prepared MIL-100(Fe) materials, including thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD) measurements, determination of textural properties, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • yield, their physical properties, and their evolving microstructures. Results and Discussion Structural analysis Raman spectroscopy analysis of the exfoliated samples revealed prominent vibrational modes of hexagonal 2H-MoS2, 2H-WS2, and mixture of both phases, represented by E12g at 382 cm−1 and A1g at
  • additional peaks observed in all XRD diagrams at ≈37° and ≈69° positions are due to the silicon substrate. The X-ray photoelectron spectroscopy (XPS) survey scans and high-resolution scans for all samples are presented in Figure 3a–j. All XPS analyses were first calibrated using the C 1s peak of carbon at
  • with energy-dispersive spectroscopy (EDS) mapping were carried out on the MoS2/WS2 composite. High-annular angle dark-field (HAADF-STEM) allowed the identification of atomic positions with Z differences [35][36], and in particular here, the W sites as shown in Figure 5g. This is confirmed by EDS maps
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Synthesis of silver–palladium Janus nanoparticles using co-sputtering of independent sources: experimental and theorical study

  • Maria J. Martínez-Carreón,
  • Francisco Solís-Pomar,
  • Abel Fundora,
  • Claudio D. Gutiérrez-Lazos,
  • Sergio Mejía-Rosales,
  • Hector N. Fernández-Escamilla,
  • Jonathan Guerrero-Sánchez,
  • Manuel F. Meléndrez and
  • Eduardo Pérez-Tijerina

Beilstein J. Nanotechnol. 2024, 15, 808–816, doi:10.3762/bjnano.15.67

Graphical Abstract
  • promote the synthesis of bimetallic Janus nanoparticles. The structural properties of the resulting nanoparticles were investigated by transmission electron microscopy (TEM), and the chemical composition was analyzed by TEM energy dispersive spectroscopy (TEM-EDS), which, together with structural analysis
PDF
Album
Full Research Paper
Published 04 Jul 2024

Electron-induced ligand loss from iron tetracarbonyl methyl acrylate

  • Hlib Lyshchuk,
  • Atul Chaudhary,
  • Thomas F. M. Luxford,
  • Miloš Ranković,
  • Jaroslav Kočišek,
  • Juraj Fedor,
  • Lisa McElwee-White and
  • Pamir Nag

Beilstein J. Nanotechnol. 2024, 15, 797–807, doi:10.3762/bjnano.15.66

Graphical Abstract
  • surface-based investigations, where the electron-induced ligand loss has been probed by XPS [13], ion desorption [14], IR spectroscopy [15], or cluster-beam studies [16][17][18]. The ligand loss has also been probed by ion impact, both in the gas phase [19] and on the surface [13], and, theoretically, by
  • resulting crude solid product was sublimed at room temperature at 700 mTorr to yield the crystalline yellow product. Yield: 140 mg, 40%. Purity of the product was assessed using 1H NMR and IR spectroscopy. IR (hexane) νCO (cm−1): 2100, 2034, 2020, 1997. 1H NMR (400 MHz, CDCl3) δ 3.71 (s, 3H), 3.25 (dd, J
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024
Other Beilstein-Institut Open Science Activities