Search results

Search for "spring constant" in Full Text gives 174 result(s) in Beilstein Journal of Nanotechnology.

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

  • Julian Kalb,
  • Vanessa Knittel and
  • Lukas Schmidt-Mende

Beilstein J. Nanotechnol. 2019, 10, 412–418, doi:10.3762/bjnano.10.40

Graphical Abstract
  • probe lithography was performed with an Innova AFM (Bruker) in contact mode. The applied force was significantly higher than usually chosen for topography scanning. We used OTESPA-R3 (Bruker AFM probes) silicon tips with a spring constant of approximately 26 N/m. Based on the spring constant, we
  • . This is related to the high refractive index of TiO2, the size of the nanorods, and the dielectric antenna effect of the stringed nanorods [46]. To test the reliability of the presented method, the writing process was repeated with several probes. The spring constant is different for each probe even if
  • they are taken from the same fabrication batch. The value range for the spring constant given by the manufacturer is 12–103 N/m, which results in a value range for the applied force of 4–32 μN. However, the spring constants of the used probes have been usually in the lower third of the given range. It
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes

  • Mateusz Mrukiewicz,
  • Krystian Kowiorski,
  • Paweł Perkowski,
  • Rafał Mazur and
  • Małgorzata Djas

Beilstein J. Nanotechnol. 2019, 10, 71–78, doi:10.3762/bjnano.10.7

Graphical Abstract
  • (Figure 2a). This technique can provide qualitative and quantitative information about tested samples [31][32][33]. To register topographical maps, silicon AC240 TS (Olympus) scanning probes were used in a frequency range from 0.8 to 1.0 Hz. The nominal probe spring constant was 2.7 N/m and the radius was
PDF
Album
Full Research Paper
Published 07 Jan 2019

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • the topography profile acquired during the first scan. An AC voltage was then applied between the probe and the sample holder. Furthermore, the mechanical oscillation amplitude was reduced to stay in the linear regime. The detected electrostatic force gradients reduced the effective spring constant of
PDF
Album
Full Research Paper
Published 07 Dec 2018

Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films

  • Alexander Gaul,
  • Daniel Emmrich,
  • Timo Ueltzhöffer,
  • Henning Huckfeldt,
  • Hatice Doğanay,
  • Johanna Hackl,
  • Muhammad Imtiaz Khan,
  • Daniel M. Gottlob,
  • Gregor Hartmann,
  • André Beyer,
  • Dennis Holzinger,
  • Slavomír Nemšák,
  • Claus M. Schneider,
  • Armin Gölzhäuser,
  • Günter Reiss and
  • Arno Ehresmann

Beilstein J. Nanotechnol. 2018, 9, 2968–2979, doi:10.3762/bjnano.9.276

Graphical Abstract
  • the MFM measurements. Hard magnetic MFM probes (Nanosensors PPP-MFMR) with a nominal resonance frequency of 70 kHz and a spring constant of 2.8 N·m−1 were employed. XPEEM characterization XPEEM measurements [48][49] of the local magnetization distribution in the F layer of the EB layer system were
PDF
Album
Full Research Paper
Published 03 Dec 2018

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • force gradient) induced by an alternating bias between tip and sample (also termed FM detection of electrostatic force). This frequency shift is: where C″(d) is the second derivative of the capacitance, ν0 is the (free) resonance frequency and clever is the spring constant of the cantilever. For a bias
PDF
Album
Full Research Paper
Published 23 Nov 2018

Characterization of the microscopic tribological properties of sandfish (Scincus scincus) scales by atomic force microscopy

  • Weibin Wu,
  • Christian Lutz,
  • Simon Mersch,
  • Richard Thelen,
  • Christian Greiner,
  • Guillaume Gomard and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2018, 9, 2618–2627, doi:10.3762/bjnano.9.243

Graphical Abstract
  • to the scales before imaging. Spring constant and deflection sensitivity of all cantilevers (All-in-One-Al, BudgetSensors) were determined with the thermal tune method integrated into the corresponding AFM software. Normal load and lateral force were calibrated according to the procedure described by
  • cantilevers (spring constant of approx. 40 N/m) and sharp silicon tips. Nine areas (5 µm × 5 µm) were scratched on each sample with increasing load or fixed load and increasing time. Every experiment was started with a pristine sharp tip cantilever. The red rectangles mark areas where no wear was observed
PDF
Album
Full Research Paper
Published 02 Oct 2018

Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor

  • Julia Körner

Beilstein J. Nanotechnol. 2018, 9, 2546–2560, doi:10.3762/bjnano.9.237

Graphical Abstract
  • and the degree of frequency matching. Consequently, while an individual cantilever is characterized by its eigenfrequency, spring constant, effective mass and quality factor, the resonance peaks of the co-resonantly coupled system can be described by effective properties which are a mixture of both
  • -resonant system’s effective properties. While the effective spring constant and effective mass mainly define the sensitivity of the coupled cantilever sensor, the effective quality factor primarily influences the detectability. Hence, a balance has to be found in optimizing both parameters in sensor design
  • . These properties can be altered either due to a change of the cantilever’s properties (spring constant, mass) or an external force gradient. The oscillation detection is usually realized by laser-optical methods such as interferometry or deflectometry [8]. In many cases, the shift of the cantilever’s
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • processing Atomic force microscopy (AFM) topographic imaging was employed to measure the roughness of the samples. Imaging was performed on a JPK NanoWizard 3 (JPK Instruments AG) operated in ac mode using ACTA cantilevers (spring constant ≈40 N/m, resonance frequency ≈300 kHz; Applied NanoStructuresInc
PDF
Album
Full Research Paper
Published 04 Sep 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • at a scan rate of ≈1.0 Hz, in ambient conditions (≈21 °C), using a ScanAsyst-air probe (Bruker) with a spring constant of 0.44 N/m. Images obtained in filtered artificial seawater were carried out in a fluid cell using either a ScanAsyst-fluid probe (Bruker) with a spring constant of 1.12 N/m or a
  • silicon nitride cantilever with a silicon tip (SNL, Bruker) with a spring constant of 0.12 N/m. All of the above-mentioned probes were calibrated on a stiff sample, to access tip deflection sensitivity, followed by thermal tuning to determine the spring constant. At least five sea urchin adhesive
PDF
Album
Full Research Paper
Published 24 Aug 2018

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • . Silicon tips (NCH, Bruker Nano Inc) were calibrated on a stiff surface prior to experiments in order to quantify the tip–sample forces. The resonance frequency is about 320 kHz and their spring constant (determined by thermal tuning) is about 40 N/m. All the images were recorded with a resolution of 512
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

Quantitative comparison of wideband low-latency phase-locked loop circuit designs for high-speed frequency modulation atomic force microscopy

  • Kazuki Miyata and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2018, 9, 1844–1855, doi:10.3762/bjnano.9.176

Graphical Abstract
  • cantilever thermal vibrations nth. These values were calculated using the following equation [1][33]: where kB, T, k, and A denote Boltzmann's constant, the absolute temperature, the cantilever spring constant, and the cantilever vibration amplitude, respectively. Qd* represents the apparent Q-factor in the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • force field Fts(z) causes a shift in the angular resonance frequency ω0 of the cantilever. For small oscillation amplitudes, the modified angular resonance frequency can approximately be described by means of an effective spring constant where k is the undisturbed spring constant of the cantilever
  • Asylum research MFP3D SFM in a nitrogen glovebox (level of humidity below 1%) for all experiments. The typical resonance frequency of the cantilevers (Bruker Model:SCM-PIT-V2) was ≈75 kHz, spring constant of 3 N/m, a tip radius of 25 nm and a tip height of 10 to 15 μm. The typical length of the
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • sample preparation Friction force microscopy experiments were performed with uncoated (“SiOx/Si”) and gold-coated (“Au/Si”) silicon tips and cantilevers with a nominal spring constant of knom = 0.2 N/m (PPP-CONTR, PPP-CONTAu; Nanosensors, Switzerland). The cantilevers were fixed with conductive glue
  • . The holder was then transferred into the measurement chamber with the FFM experiment. Normal and lateral spring constant of each cantilever were calculated from the resonance frequency and the dimensions of cantilevers and tips. The tip height was assessed individually from SEM images of the
PDF
Album
Full Research Paper
Published 05 Jun 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • mobility [22]. As cantilevers, Bruker SCM-PIT-V2 (Bruker, Camarillo, USA) cantilevers with a conductive Pt/Ir coating and a nominal spring constant of 3 N·m−1 were employed. The contact resonance frequency and the amplitude were tracked with a phase-locked loop (HF2LI, Zurich Instruments, Switzerland) [34
PDF
Album
Full Research Paper
Published 28 May 2018

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • , and a quality factor of Q = 50.0. Using the Sader method [25] we find a spring constant of kdyn = 18 N·m−1. Figure 2d compares electrostatically excited resonance peaks for air and deionized water. For regular cantilevers without an encasement viscous losses to the surrounding medium are the dominate
PDF
Album
Full Research Paper
Published 08 May 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • a C code. The cantilever tip dynamics are governed by the equation of motion: where m is the effective mass, z the vertical tip position above the sample surface (z = 0), t is the time, k the effective spring constant of the cantilever, ω the natural angular frequency of the cantilever, and Q the
PDF
Album
Full Research Paper
Published 24 Apr 2018

Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets

  • Yue Shen,
  • Ying Wang,
  • Yuan Zhou,
  • Chunxi Hai,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 1146–1155, doi:10.3762/bjnano.9.106

Graphical Abstract
  • force gradients cause shifts of Δf0 in the resonance frequency with a proportional relationship [30]: where k is the stiffness (or spring constant) of the cantilever. Resonance shifts also give rise to phase shifts, ∆φ, used to generate an image of the electric force gradients. In EFM imaging, the
  • cantilever coating with a 10 nm Pt layer on a 20 nm Ti sublayer with a nominal spring constant of ≈3.5 Nm−1 and oscillating frequencies of 60–90 kHz. The lift start height and lift scan height in EFM imaging were 20 nm and 15 nm, respectively. Characterizing the degree of reduction of GO sheets reduced using
PDF
Album
Full Research Paper
Published 11 Apr 2018

A simple extension of the commonly used fitting equation for oscillatory structural forces in case of silica nanoparticle suspensions

  • Sebastian Schön and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2018, 9, 1095–1107, doi:10.3762/bjnano.9.101

Graphical Abstract
  • ) serving as colloidal probe. The spring constant of the cantilever was determined via the thermal noise method [62]. The surface of the colloidal probe and the silicon wafer form the two confining walls for the experiment. As the colloidal probe is orders of magnitude larger than their distance, the forces
  • % and the decay length by 2.6%. The differences are related to changes in the contact area of the colloidal probe and/or errors in the determination of the cantilever spring constant. Hence, the wavelength is unaffected by this. For this reason all experiments were conducted with a single cantilever
  • movement of the z-piezo in nanometers. The data were analyzed as follows: 1) Force and separation were calculated using the sensitivity slope of the linear contact region and the spring constant of the cantilever, which is determined from the thermal spectrum. 2) All force curves were aligned in relation
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • modeled by where, ω0 and k are the cantilever’s resonant frequency and spring constant, respectively, C´´(z) is the second derivative of the tip–sample capacitance C(z), Vtip is the applied bias, Φ is the tip–sample surface potential difference, and f´(z) is the first derivative of the electric force
  • used for morphological (bare tip) and electrical characterization (Au-coated tips), respectively. The ScanAsyst-Air probes have typical resonant frequency ω0 = 70 kHz and a spring constant k = 0.4 N/m. During operation in peak force mode, they are oscillated at a frequency f = 2 kHz with a typical
  • amplitude A = 2 nm [64]. The HQ:NSC18/Cr-Au and HQ:CSC37-CrAu probes have typical resonant frequencies ω0 = 75 kHz and ω0 = 20 kHz; and a spring constant k = 2.8 N/m and k = 0.3 N/m, respectively. For tapping and EFM imaging, these probes are oscillated near their resonant frequency with amplitude A ≈ 20 nm
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Scanning speed phenomenon in contact-resonance atomic force microscopy

  • Christopher C. Glover,
  • Jason P. Killgore and
  • Ryan C. Tung

Beilstein J. Nanotechnol. 2018, 9, 945–952, doi:10.3762/bjnano.9.87

Graphical Abstract
  • cyanoacrylate. A razor blade was then used to cleave the sample, leaving behind a pristine sample surface. The sample was placed in a closed AFM flow-cell with an integrated relative humidity sensor. A cantilever with spring constant kL = 1.7 ± 0.2 N/m and first free resonance = 61.85 ± 0.1 kHz was mounted to
PDF
Album
Full Research Paper
Published 21 Mar 2018

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

  • Ying Wang,
  • Yue Shen,
  • Xingya Wang,
  • Zhiwei Shen,
  • Bin Li,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 900–906, doi:10.3762/bjnano.9.84

Graphical Abstract
  • deposited. Characterization The samples were characterized by using a MultiMode 8 AFM (Bruker) equipped with a J scanner. Silicon cantilevers coated with a 30 nm Pt layer with a nominal spring constant of 2.8 N·m−1 and oscillating frequencies of 60–90 kHz (NSC18/ Pt, MikroMasch Co.) were used. Height and
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2018

Graphene composites with dental and biomedical applicability

  • Sharali Malik,
  • Felicite M. Ruddock,
  • Adam H. Dowling,
  • Kevin Byrne,
  • Wolfgang Schmitt,
  • Ivan Khalakhan,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Lok Kumar Shrestha,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2018, 9, 801–808, doi:10.3762/bjnano.9.73

Graphical Abstract
  • ). Characterization The MLG and FLG material was characterized by Raman spectroscopy (Renishaw at 514 nm) and the AFM measurements were performed on a MultiMode V AFM (Veeco) in tapping mode under ambient conditions. RTESP silicon probes (Veeco) were used with a nominal tip radius of 10 nm and nominal spring constant
PDF
Album
Full Research Paper
Published 05 Mar 2018

Combined pulsed laser deposition and non-contact atomic force microscopy system for studies of insulator metal oxide thin films

  • Daiki Katsube,
  • Hayato Yamashita,
  • Satoshi Abo and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2018, 9, 686–692, doi:10.3762/bjnano.9.63

Graphical Abstract
  • water before performing PLD. AFM images are processed using the WSxM software [57]. NC-AFM topographic images and line profiles of insulator thin films of (a, b) anatase TiO2(001) and (c, d) LaAlO3(100). Values of the cantilever resonance frequency, spring constant, oscillation amplitude and frequency
PDF
Album
Full Research Paper
Published 21 Feb 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • between tip and sample surface, Young’s modulus (according to either DMT or Sneddon model), deformation and energy dissipation along with the surface topography (Supporting Information File 1). Etched silicon probes RTESPA-300 with a nominal spring constant k ≈ 40 N/m for QNM were provided by Bruker. All
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Wafer-scale bioactive substrate patterning by chemical lift-off lithography

  • Chong-You Chen,
  • Chang-Ming Wang,
  • Hsiang-Hua Li,
  • Hong-Hseng Chan and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2018, 9, 311–320, doi:10.3762/bjnano.9.31

Graphical Abstract
  • tapping mode atomic force microscopy (AFM, Dimension Fastscan, Bruker Nano Surfaces, Hsinchu, Taiwan). Topographic AFM images were collected using a silicon cantilever with a spring constant of 48 N/m and a resonance frequency of 190 kHz (Nanosensors, Neuchatel, Switzerland). The substrates were gently
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2018
Other Beilstein-Institut Open Science Activities