Search results

Search for "HRTEM" in Full Text gives 210 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

  • Qingquan Kong,
  • Yichun Yin,
  • Bing Xue,
  • Yonggang Jin,
  • Wei Feng,
  • Zhi-Gang Chen,
  • Shi Su and
  • Chenghua Sun

Beilstein J. Nanotechnol. 2018, 9, 2526–2532, doi:10.3762/bjnano.9.235

Graphical Abstract
  • is the SAED pattern of the selected yellow square area); (d) HRTEM along the [1] direction; (e,f) TEM images of a CuO nanobelt after catalysis tests at 650 °C. CH4 conversion against the temperature. (a) Heating profile (Tmax = 850 °C) for NBs, NWs and NPs, with 1% Pd/Co3O4 as a reference. (b
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2018

High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)1−x(MnSb)x alloy

  • Leonid N. Oveshnikov,
  • Elena I. Nekhaeva,
  • Alexey V. Kochura,
  • Alexander B. Davydov,
  • Mikhail A. Shakhov,
  • Sergey F. Marenkin,
  • Oleg A. Novodvorskii,
  • Alexander P. Kuzmenko,
  • Alexander L. Vasiliev,
  • Boris A. Aronzon and
  • Erkki Lahderanta

Beilstein J. Nanotechnol. 2018, 9, 2457–2465, doi:10.3762/bjnano.9.230

Graphical Abstract
  • variations. Contrast changes in the lateral direction are due to diffraction contrast arising from the columnar film microstructure, which was distinctly observed in bright-field TEM (Figure 4a) and in high-resolution bright-field TEM (HRTEM) images (Figure 4b), and even affects the HAADF TEM image (not
  • presented here). Energy-dispersive X-ray microanalysis (EDX) of the film composition near the interface edge and at a distance from it yielded the ratio Mn/Ga/Sb = 30:30:40 with 2% accuracy. A HRTEM image of studied film is presented in Figure 4b. Fast Fourier-transform (FFT) analysis of the high-resolution
  • and Hall slope ΔRH normalized by the corresponding values at T = 320 K. TEM images of the film cross section after annealing (sample GM3): (a) bright-field image, (b) HRTEM image. (a,d) HRTEM images of sample areas. (b,e) Corresponding two-dimensional Fourier spectra. (c,f) Calculated electronograms
PDF
Album
Full Research Paper
Published 14 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • /nanoparticles [32]. Further information about the structure of ACO/BMO-30 was collected from TEM images (Figure 3). The TEM images are in line with the SEM observations, i.e., ACO/BMO-30 exhibits a flower-like architecture loaded with Ag2CO3 nanoparticles (Figure 3a,b). The HRTEM displays two different lattice
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Synthesis of a MnO2/Fe3O4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation

  • Zishun Li,
  • Xuekun Tang,
  • Kun Liu,
  • Jing Huang,
  • Yueyang Xu,
  • Qian Peng and
  • Minlin Ao

Beilstein J. Nanotechnol. 2018, 9, 1940–1950, doi:10.3762/bjnano.9.185

Graphical Abstract
  • successful loading of of iron oxide and manganese oxide in the two-step procedure. To further characterize the morphologies and structures of Fe3O4/diatomite and MnO2/Fe3O4/diatomite, transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM) analyses were also
  • nanoparticles [28]. The marked lattice fringe spacing of 0.28 nm in the HRTEM images (inset) is corresponding to the (331) planes of cubic magnetite [29]. Figure 4b shows the TEM images of MnO2/Fe3O4/diatomite, the nanoparticles on the surface are fully covered by a layer of rough 3D structured material. As
  • seen in the magnified image (Figure 4c), a flower-like or urchin-like structure of the outer MnO2 shell can be easily observed. The crystal structure of the outer shell is analyzed by using HRTEM, as shown in Figure 4d. As a whole, the chaotic and unclear lattice fringes in the image illustrate the
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2018

Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition

  • Irini Michelakaki,
  • Nikos Boukos,
  • Dimitrios A. Dragatogiannis,
  • Spyros Stathopoulos,
  • Costas A. Charitidis and
  • Dimitris Tsoukalas

Beilstein J. Nanotechnol. 2018, 9, 1868–1880, doi:10.3762/bjnano.9.179

Graphical Abstract
  • time of the NPs in the aggregation zone results in the formation of bigger NPs. Soft landing – structural characterization Structural characterization of the nanoparticles was performed by high-resolution electron transmission microscopy (HRTEM) and X-ray diffraction. In both cases the nanoparticles
  • were exposed to ambient air prior to characterization. From analysis of HRTEM images it is evident that Hf NPs have a distinct core–shell structure, consistent with a Hafnium core covered with Hafnium oxide (Figure 2). In the core the distance between adjacent planes is equal to d = 0.275 nm, value
  • the temperature [37] as we expect it in the vacuum system during NP growth. There are also some peaks that are due to a compound of Hf with oxygen (O) and/or nitrogen (N). This result is consistent with HRTEM measurements. The exact nature of the shell cannot be identified from the X-ray patterns
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • the surface of NPLs-2.5-800 are observed clearly. A thin carbon layer is found on the edge of the platelet. An HRTEM image shows Co nanoparticles with an average diameter of 21 nm that are embedded evenly in the carbon layer (Figure 3B). The measured d-spacing value of 0.21 nm in Figure 3C
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • TEM since some layers could be viewed via the bended NSs. Figure 3d is a filtered HRTEM image showing evidence of MoS2 NS stacking defects highlighted by the arrows. These defects are inherent to the fabrication process. This NSs stacking configuration could exhibit interesting properties in membrane
  • sulfurization of a 50 nm Mo film at 850 °C on SiO2/Si substrates: (a) Plane-view HRTEM image; (b) high-magnification TEM image; (c) FFT pattern of panel (a); (d) filtered HRTEM image indicating the presence of sheet stacking defects (indicated by orange arrows). MoS2 sample grown by double sulfurization of a 50
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • observed in the HRTEM image of the ZnO@NCNT composite (Figure 3a), which correspond to the (002) and (101) planes of ZnO, respectively. Figure 3b shows the selected area electron diffraction (SAED) patterns of the ZnO@NCNT composite. The diffraction rings represent different planes of ZnO, revealing the
  • ). Scanning electron microscopy (SEM) images were collected on a Hitachi S4800 scanning electron microscope. High-resolution transmission electron microscopy (HRTEM) images were recorded with a JEOL JEM-2100F transmission electron microscope. The elements distribution images were detected by using TEM at 160
  • a battery testing system (Neware, Shenzhen) in the potential range of 1–3 V vs Li/Li+. XRD patterns of S, ZnO@NCNT and S/ZnO@NCNT composite. TGA curve of the S/ZnO@NCNT composite. (a) HRTEM image; (b) SAED patterns; (c) TEM image; (d–g) EDX mapping images of the ZnO@NCNT composite. (a) SEM image; (b
PDF
Album
Full Research Paper
Published 06 Jun 2018

Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity

  • Huan Xing,
  • Wei Wen and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2018, 9, 1550–1557, doi:10.3762/bjnano.9.146

Graphical Abstract
  • corresponding to polycrystalline TiO2(B). The high-resolution TEM (HRTEM) image demonstrated in Figure 3c shows parallel fringes with a neighboring distance of ≈0.545 nm, corresponding to the (200) plane of TiO2(B) and distance of ≈0.382 nm, which is attributed to the (110) plane of TiO2(B). The cross-angle of
  • vibrational modes of the TiO2(B) phase [28], which is in agreement with the XRD and HRTEM results. A weak Raman peak located at 1657 cm−1 can be discerned in the TGN sample, which corresponds to the G band (graphitized carbon), confirming the existence of graphene in the powders [31]. The peak intensity
  • , b) TEM and (c) HRTEM image of sample TGN-branch 4 h. The inset in (b) shows the corresponding SAED pattern. Raman spectra of samples TGN and TGN-branch 4 h recorded over the range of (a) 100–1000 cm−1 and (b) 1000–2000 cm−1. (a) XPS survey spectrum and core level XPS spectra of (b) Ti 2p, (c) C 1s
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • −, small AgI nanoparticles (diameter: 20–40 nm) are uniformly coated on the surface of Ag2WO4 nanorods, signifying the formation of the AgI/Ag2WO4 core–shell heterostructure. To more clearly observe the microstructure of the AgI/Ag2WO4 composite, the TEM and high-resolution TEM (HRTEM) images are shown in
  • Figure 2e,f. It can be seen that many nanoparticles are deposited on the surface of the Ag2WO4 nanorods (Figure 2e). The HRTEM image (Figure 2f) shows that one set of lattice fringes can be observed. The lattice fringe of 0.23 nm matches well with the (220) plane of AgI. No lattice fringe correlated to
  • scanning electron microscope (FE-SEM, Hitachi S–4800) and a high-resolution transmission electron microscope (HRTEM, JEOL JEM–2010F). Energy-dispersive X-ray (EDX) spectroscopy coupled with SEM was employed to identify the chemical composition of the sample. UV–vis diffuse reflectance spectra (UV–vis DRS
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties

  • Rasha Ghunaim,
  • Maik Scholz,
  • Christine Damm,
  • Bernd Rellinghaus,
  • Rüdiger Klingeler,
  • Bernd Büchner,
  • Michael Mertig and
  • Silke Hampel

Beilstein J. Nanotechnol. 2018, 9, 1024–1034, doi:10.3762/bjnano.9.95

Graphical Abstract
  • on carbon tape. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) measurements and nanobeam electron diffraction patterns were performed using a Tecnai F30 (FEI) instrument operated at 300 kV or a Tecnai G2 (FEI) instrument operated at 200 kV. Both were
  • nanoparticles of Fe50Co50@CNT was investigated by HRTEM measurements. Surprisingly, some particles in the as-prepared sample showed high crystallinity, even without annealing, as shown in Figure 3c. The crystallinity of the core material was confirmed by the appearance of the lattice fringes (marked by short
  • nanoparticles The crystallinity of the Fe–Co nanoparticles was verified by powder XRD, HRTEM and nanobeam electron diffraction. No indication of oxide or carbide phases were detected, which means that the synthesis approaches guarantee CNTs as protective shells for the MNPs. The additional annealing step is
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2018

Graphene composites with dental and biomedical applicability

  • Sharali Malik,
  • Felicite M. Ruddock,
  • Adam H. Dowling,
  • Kevin Byrne,
  • Wolfgang Schmitt,
  • Ivan Khalakhan,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Lok Kumar Shrestha,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2018, 9, 801–808, doi:10.3762/bjnano.9.73

Graphical Abstract
  • 0.47 eV). High resolution spectra for the core level C 1s and O 1s were recorded in 0.05 eV steps. An electron flood gun was used during the measurements to prevent sample charging. The FLG material was also characterized by TEM, HRTEM (Jeol ARM at 80 kV) and helium ion microscopy (HeIM, Zeiss Orion at
  • ) TEM overview of FLG and d) HRTEM detail of FLG showing a single layer. a) and b) AFM detail and profile of a multi-layer graphene (MLG) flake, ca. 10 graphene layers, c) and d) AFM detail and profile of a few-layer graphene (FLG) flake, ca. 1–6 graphene layers. a) GI composite after strength testing
PDF
Album
Full Research Paper
Published 05 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • BiOI nanolayers. As pure ZnO, sample B-6 (Figure 2c) presents nanospheres with a highly smooth surface, which is possibly caused by calcination [38]. In order to make further investigations on the ZnO/BiOI heterostructure, TEM and HRTEM analysis were applied. Figure S2a, Supporting Information File 1
  • and HRTEM images on the different edges of sample B-3 are displayed in Figure 3a–c, where lattice fringe spacings are 0.30 and 0.28 nm, respectively, matching well with the interplanar distances of the (102) plane in BiOI and the (100) plane in ZnO. These results further validate the formation of
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • ), and HRTEM (JEOL2100). UV–vis analysis was carried out on a spectrophotometer (FLAME-S, Ocean Optics, Inc.). PL measurements (IK3301R-G, Kimmon Koha) were performed at room temperature using a He–Cd laser source (325 nm). For TRPL decay measurement of ZnO structures, a time-correlated single photon
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • -thermal (PT) route compared to other methods such as impregnation (IM) and physical mixture (PM). The CeO2/CNT-PT has smaller and narrower ceria particle size distribution (2 to 14 nm) than CeO2/CNT-IM (6 to 20 nm) based on the TEM and HRTEM analysis. In addition, NH3-TPD analysis was carried out in order
  • MnO2 crystalline phase at high loading (1.8%). This suggests that the Mn–Ce particles were evenly distributed on the CNTs. The TEM images specified that the size of Mn–Ce particles were very small crystals and well dispersed on the surface of the MWCNTs. Further analysis was conducted using HRTEM in
  • the NO removal activity. 0.5 Mn/(Mn + Ce) molar ratio was found to be the optimum loading amount for Mn–CeOx/CNT catalyst preparation. From the HRTEM images, an uneven shape and fuzzy crystal lattice was identified on the metal nanoflakes suggesting that the Mn–CeOx/CNT catalyst is amorphous in
PDF
Review
Published 27 Feb 2018

Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles

  • Fuat Topuz and
  • Tamer Uyar

Beilstein J. Nanotechnol. 2018, 9, 693–703, doi:10.3762/bjnano.9.64

Graphical Abstract
  • particles with a mean size of 185 nm, suggesting that the addition of β-CD leads to the formation of larger particles (Figure 2a). HRTEM images of the respective particles revealed a mesoporous structure in the particles (Figure 2b,c (vii)). Since the particles do not display any aggregation, the CTAC
  • the particles synthesized at 0.75% (w/v) β-CD, MSNs prepared at 0.25% (w/v) revealed particle aggregates (Figure S4, Supporting Information File 1). HRTEM images of the particles evidenced porosity in both particles. The nanoparticles were also synthesized at various CTAC concentrations at the
  • with a mean pore size of 0.78 nm while the surface area of the respective particles was 764.38 m2/g. This is in line with the HRTEM analysis of the respective particles (Figure 3f). Even though the pore size is significantly smaller, the pore volume was increased from 0.791 to 0.853 cm3/g. The presence
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • ) measurements were performed by using the same SEM instrument in order to find the elemental constituents of the samples. More detailed investigations on the morphology were obtained by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies. Images were recorded on a Technai G 20 (FEI) S
  • Figure S1, Supporting Information File 1 show the presence of all the constituent elements. The TEM images of g-C3N4, CT and CTCN heterojunction are presented in Figure 5. Pure g-C3N4 exhibits a 2D lamellar sheet-like morphology (Figure 5a). The HRTEM image of g-C3N4 shows lattice fringes with 0.325 nm
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • chemical composition of samples was analyzed by XPS (PHI Quantera II, Ulvac-PHI, Inc.) with an Al Kα radiation source. High resolution transmission electron microscope (HRTEM, FEI-TECNAI F20) images were obtained at 200 kV. PL spectra of CDs solution were acquired with a PL spectrophotometer (Perkin Elmer
  • ) HRTEM image of CD/g-C3N4(0.5). The insets of (b) and (e) show the energy-dispersive X-ray spectroscopy (EDS) results and particle size distribution of CDs, respectively. (a) XRD patterns and (b) FTIR spectra of g-C3N4, CD/g-C3N4(0.1), CD/g-C3N4(0.2), and CD/g-C3N4(0.5). (a) The absorption spectrum of
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications

  • Ruiyuan Zhuang,
  • Shanshan Yao,
  • Maoxiang Jing,
  • Xiangqian Shen,
  • Jun Xiang,
  • Tianbao Li,
  • Kesong Xiao and
  • Shibiao Qin

Beilstein J. Nanotechnol. 2018, 9, 262–270, doi:10.3762/bjnano.9.28

Graphical Abstract
  • HRTEM image indicated that the grown structure was single crystalline with a lattice spacing of 0.344 nm, corresponding to the [11] crystal plane of monoclinic MoO2 (Figure 3i). SEM images of pure sulfur and S/MoO2–CNF composites are displayed in Figure 4a,b, respectively. The sulfur morphology was
  • and morphology of the fibers was determined by scanning electron microscopy (SEM, JSM-7001F). Details concerning the morphology and structure were examined by high-resolution transmission electron microscopy (HRTEM, Tecnai G2 F30), operated at an accelerating voltage of 200 kV. Selected specimens were
  • examined with energy dispersive X-ray (EDX) spectroscopy and elemental mapping attached to the HRTEM operating at 200 kV. The adsorption ability was determined by preparing a Li2S6 solution through the addition of Li2S to sulfur at the molar ratio of 1:5 in tetrahydrofuran (THF) under stirring. The
PDF
Album
Supp Info
Full Research Paper
Published 24 Jan 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • vapours, and (ii) ultraviolet (UV) decomposition of AgNO3 in a suspension of BN NPs. The hybrid microstructures were studied by high-resolution transmission electron microscopy (HRTEM), high-angular dark field scanning TEM imaging paired with energy dispersion X-ray (EDX) mapping, X-ray photoelectron
  • to 35 nm, were also detected (Figure 1h). The HRTEM images of individual BN/Ag HNMs obtained via CVD and UV decomposition methods are illustrated in Figure 1f and 1i. The outer BN NP surface is formed by BN nanosheets consisting of several h-BN atomic layers and Ag NPs located between the petals
  • . HADF-STEM and spatially-resolved EDX mapping (Figure 2) demonstrate that the surface of BN NPs is densely populated with Ag NPs. Thorough structural characterization of individual Ag NPs revealed their fine structure. The HRTEM images of individual Ag NPs are depicted in Figure 2c and 2f. The particles
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • TEM with a LaB6 cathode operated at 120 kV. High resolution transmission electron microscopy (HRTEM) was done using an aberration corrected Titan 80-300 (FEI, Eindhoven, The Netherlands) with field emission gun, operated at 300 kV. Scanning transmission electron microscopy (STEM) and chemical analysis
  • samples. The slight differences between the AuNP distribution in TEM and STEM may be due to variation between sample areas. Both the AuNPs and the TNPs were further analyzed via HRTEM and fast Fourier transformation (FFT) analysis of the observed lattice fringes along with further EDXS experiments. Figure
  • S4, Supporting Information File 1 shows a representative HRTEM image of a typical AuNP and the surrounding TNP in TS_Au5.0. The size of the AuNP (dark spot) is 12 nm. The AuNP is surrounded by different TNPs of about 5 nm in diameter. The size was deduced from the extension of the lattice fringes
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria

  • Jiajun Wang,
  • Xia Liu,
  • Gesmi Milcovich,
  • Tzu-Yu Chen,
  • Edel Durack,
  • Sarah Mallen,
  • Yongming Ruan,
  • Xuexiang Weng and
  • Sarah P. Hudson

Beilstein J. Nanotechnol. 2018, 9, 137–145, doi:10.3762/bjnano.9.16

Graphical Abstract
  • synthesized C-dots (Figure S1, Supporting Information File 1) and a decrease in the QY. Characterization of the carbon nanodots The morphology of the products was characterized by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Figure 1A–C shows the TEM
  • different additives obtained and labeled as Sa, Sb, Sc, Sd, and Se, respectively. Carbon nanodot characterization The product morphology was assessed by TEM and HRTEM, which was performed on a JEOL-2100F instrument with an accelerating voltage of 200 kV. The XRD patterns of Sa, Sb, and Se were recorded on a
  • viability. Quantification is reported as relative values to the negative control, where the negative control (untreated) is set to 100% viability. TEM and HRTEM (inset) images of (A) Sa, (B) Sb, (C) Se samples, and corresponding size (diameter) distribution ranges for (D) Sa, (E) Sb, and (F) Se. (A–C) UV
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • microscope (FE-SEM, JSM-6700F), a transmission electron microscope (TEM, JEM 100-CXII) with an accelerating voltage of 80 kV, and a high-resolution TEM (HRTEM, GEOL-2010) with an accelerating voltage of 200 kV. Also, powder X-ray diffraction (XRD) patterns were collected on an X-ray diffractometer (Rigaku D
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

Dry adhesives from carbon nanofibers grown in an open ethanol flame

  • Christian Lutz,
  • Julia Syurik,
  • C. N. Shyam Kumar,
  • Christian Kübel,
  • Michael Bruns and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 2719–2728, doi:10.3762/bjnano.8.271

Graphical Abstract
  • microscopy (SEM, Zeiss SUPRA 60 VP) and high-resolution transmission electron microscopy (HRTEM, FEI Titan 80-300). TEM measurements were performed at 80 kV operation voltage and images acquired using a Gatan US1000 CCD camera. TEM samples were prepared by scraping the grown carbon nanostructures from the
  • in a good agreement with XPS investigations of CNFs by other authors [41][42]. The weak component at 285.0 eV (blue dashed line) originates from so-called ’adventitious carbon’ sp3, describing hydrocarbon contamination due to the exposure to ambient atmosphere. The HRTEM images in Figure 4 b reveal
  • 284.4 eV indicates sp2-hybridized carbon (blue solid line) and the weak component at 285.0 eV is stemming from adventitious sp3-hybridized carbon (blue dashed line). (b) HRTEM images of the grown CNFs. Summary of experiments resulting in CNF growth (green circles) or in no CNF growth (red triangles
PDF
Album
Full Research Paper
Published 15 Dec 2017
Other Beilstein-Institut Open Science Activities