Search results

Search for "ablation" in Full Text gives 118 result(s) in Beilstein Journal of Nanotechnology.

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • as antibacterial agents with applications in several fields due to their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL) permits the preparation of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more
  • suitable for biomedical applications than those prepared with common, wet chemical preparation techniques. To date, only a few investigations into the antimicrobial effect of AgNPs produced by PLAL have been performed. These have mainly been performed by ablation in water with nanosecond pulse widths. We
  • also be affected by other parameters linked to the ablation conditions, such as the pulse width. The antibacterial activity of AgNPs was evaluated for NPs obtained either by nanosecond (ns) or picosecond (ps) PLAL using a 1064 nm ablation wavelength, in pure water or in LiCl aqueous solution, with
PDF
Album
Full Research Paper
Published 18 Mar 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • application, different fullerenes are chosen according to their slight differences in properties. Historically, the first technique to synthesize fullerenes was based on laser ablation of graphite targets in a He gas; however, this does not produce large quantities of the material and is thus mostly used for
  • metal catalyst such as cobalt [48]. The nanotubes are typically bound together by strong van der Waals interactions and form tight bundles. The second method, laser ablation, uses continuous wave [49] or pulsed [50] lasers to ablate a carbon target in a 1200 °C tube furnace. A laser beam evaporates a
  • acid [53]. In both the arc discharge and laser ablation methods, bundles of MWNTs and SWNTs held together by van der Waals forces are generated by the condensation of carbon atoms generated from the evaporation of solid carbon sources. The third method, chemical vapor deposition (CVD), involves the
PDF
Album
Review
Published 01 Feb 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • methods for production of NPs, such as lithography, laser ablation, aerosol techniques radiolysis, and photochemical reduction. Generally, these methods are costly, energy intensive or they can be harmful to human and environment [14][15]. For example, the production of nanomaterials through chemical
PDF
Album
Review
Published 10 Dec 2015

Au nanoparticle-based sensor for apomorphine detection in plasma

  • Chiara Zanchi,
  • Andrea Lucotti,
  • Matteo Tommasini,
  • Sebastiano Trusso,
  • Ugo de Grazia,
  • Emilio Ciusani and
  • Paolo M. Ossi

Beilstein J. Nanotechnol. 2015, 6, 2224–2232, doi:10.3762/bjnano.6.228

Graphical Abstract
  • colloids synthesized by laser ablation in liquids, suitably functionalized and tagged with Raman reporters, have effectively revealed specific biomolecules, even in chemically complex environments such as cells [9][10][11][12]. On the other hand, silver and gold colloids produced by chemical routes can be
  • were synthesized by pulsed laser ablation of a metal target in inert gas at high pressure. With respect to free expansion in vacuum, the ambient gas modifies the expansion of the plasma plume, consisting of species ablated from the target surface. Depending on the nature of the gas and the pressure
  • to avoid target surface cratering under repetitive ablation. The ablation was performed in an Ar atmosphere at a pressure of 100 Pa. The number of laser pulses was fixed at 10,000. The laser fluence was kept constant at 2.0 J/cm2. The sample morphology was observed by scanning electron microscopy
PDF
Album
Full Research Paper
Published 26 Nov 2015

Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

  • Balazs Farkas,
  • Marina Rodio,
  • Ilaria Romano,
  • Alberto Diaspro,
  • Romuald Intartaglia and
  • Szabolcs Beke

Beilstein J. Nanotechnol. 2015, 6, 2217–2223, doi:10.3762/bjnano.6.227

Graphical Abstract
  • composite thin films of hydroxyapatite (HA) and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL). Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles
  • gradual release of the hydroxyapatite nanoparticles over thin film biodegradation is reported. Keywords: biodegradable scaffolds; biodegradation; hydroxyapatite; laser ablation in liquid; stereolithography; Introduction Interfaces between osteochondral prosthetics and the surrounding bone tissue are of
  • ], combustion preparation [11] and various wet chemistry techniques [12][13]. However, these routes have drawbacks regarding the synthesis attributed to the use of hazardous surfactants that are not suitable for biomedical applications [14]. Pulsed laser ablation of solid targets in liquids (PLAL) for the
PDF
Album
Full Research Paper
Published 25 Nov 2015

Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles

  • Simon Ristig,
  • Svitlana Chernousova,
  • Wolfgang Meyer-Zaika and
  • Matthias Epple

Beilstein J. Nanotechnol. 2015, 6, 1212–1220, doi:10.3762/bjnano.6.124

Graphical Abstract
  • ablation was reported [25][26][27]. Alloying of presynthesized silver core/gold shell nanoparticles by refluxing with oleylamine [28] or ultrasonication of separate gold and silver nanoparticles [29] was also described. Here, an aqueous co-reduction of silver nitrate and tetrachloroauric acid with a
PDF
Album
Full Research Paper
Published 27 May 2015

Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement

  • Zheren Du,
  • Lianwei Chen,
  • Tsung-Sheng Kao,
  • Mengxue Wu and
  • Minghui Hong

Beilstein J. Nanotechnol. 2015, 6, 1199–1204, doi:10.3762/bjnano.6.122

Graphical Abstract
  • nanomaterials have been found to exhibit optical limiting properties. Laser ablation offers the possibility of fabricating nanoparticles from a wide range of target materials. For practical use of these materials, their optical limiting performance, including optical limiting threshold and the ability to
  • efficiently attenuate high intensity light, needs to be improved. In this paper, we fabricate nanoparticles of different metals by laser ablation in liquid. We study the optical nonlinear properties of the laser-generated nanoparticle dispersion. Silica microspheres are used to enhance the optical limiting
  • the nanoparticle dispersion. Keywords: laser ablation; local field enhancement; microspheres; nanoparticles; optical limiting; Introduction Laser ablation in liquid (LAL) is a versatile technique to fabricate nanoparticles. Conventional synthesis of nanoparticles by chemical reactions is usually
PDF
Album
Full Research Paper
Published 22 May 2015

Nanostructuring of GeTiO amorphous films by pulsed laser irradiation

  • Valentin S. Teodorescu,
  • Cornel Ghica,
  • Adrian V. Maraloiu,
  • Mihai Vlaicu,
  • Andrei Kuncser,
  • Magdalena L. Ciurea,
  • Ionel Stavarache,
  • Ana M. Lepadatu,
  • Nicu D. Scarisoreanu,
  • Andreea Andrei,
  • Valentin Ion and
  • Maria Dinescu

Beilstein J. Nanotechnol. 2015, 6, 893–900, doi:10.3762/bjnano.6.92

Graphical Abstract
  • ], phase transformation and modification of physical properties of thin films [13][14][15][16]. The laser fluence values used for these applications are below the ablation threshold of the irradiated material in order to prevent a loss of material during laser processing. The absorption length of
PDF
Album
Full Research Paper
Published 07 Apr 2015

Low-cost formation of bulk and localized polymer-derived carbon nanodomains from polydimethylsiloxane

  • Juan Carlos Castro Alcántara,
  • Mariana Cerda Zorrilla,
  • Lucia Cabriales,
  • Luis Manuel León Rossano and
  • Mathieu Hautefeuille

Beilstein J. Nanotechnol. 2015, 6, 744–748, doi:10.3762/bjnano.6.76

Graphical Abstract
  • Universitaria, D.F. México, México 10.3762/bjnano.6.76 Abstract We present two simple alternative methods to form polymer-derived carbon nanodomains in a controlled fashion and at low cost, using custom-made chemical vapour deposition and selective laser ablation with a commercial CD-DVD platform. Both
  • characterization of the byproduct materials are reported. We demonstrate that CVD led to bulk production of graphitic nanocrystals and single-walled carbon nanotubes while direct laser ablation may be employed for the formation of localized fluorescent nanodots. In the latter case, graphitic nanodomains and multi
  • -wall carbon nanotubes are left inside microchannels and preliminary results seem to indicate that laser ablation could offer a tuning control of the nature and optical properties of the nanodomains that are left inside micropatterns with on-demand geometries. These low-cost methods look particularly
PDF
Album
Full Research Paper
Published 16 Mar 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • where produced by laser ablation in liquids [52][53], which allows for the synthesis of highly pure particles free of any stabilisers or reducing agents which might exert a toxicological impact of their own. In addition, laser ablation of solid noble metal alloy targets in water results in homogenous
  • small pilot study we compared the effects of silver nanoparticles, which are conjugated to BSA “in situ” and “ex situ” on oocyte maturation. In case of in situ bioconjugation silver nanoparticles are synthesized by laser ablation of a solid target in the presence of the biomolecule of choice [52][79
  • ]. The ex situ method is an alternative approach where the ablation site is physically separated from bioconjugation [80]. To this end laser ablation is carried out in a flow through reactor, while biomolecules are added at specified time delays. Innate to the in situ bioconjugation method is a distinct
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015

Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

  • Alberto Milani,
  • Matteo Tommasini,
  • Valeria Russo,
  • Andrea Li Bassi,
  • Andrea Lucotti,
  • Franco Cataldo and
  • Carlo S. Casari

Beilstein J. Nanotechnol. 2015, 6, 480–491, doi:10.3762/bjnano.6.49

Graphical Abstract
  • (fs) laser irradiation of a graphite target [50]. fs laser pulses were used to produce amorphous carbon films containing sp, sp2 and sp3 fractions, however control over their relative quantities was not demonstrated [51]. Isolated wires can be produced by laser ablation (with both fs and ns pulses) of
PDF
Album
Review
Published 17 Feb 2015

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

  • Jes Ærøe Hyllested,
  • Marta Espina Palanco,
  • Nicolai Hagen,
  • Klaus Bo Mogensen and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2015, 6, 293–299, doi:10.3762/bjnano.6.27

Graphical Abstract
  • can be mainly divided into top down and bottom up processes. Top down processes consist of physical processes where a solid is broken down into nanoparticles as it appears for example during laser ablation of nanoparticles from a macroscopic piece of metal [7][8]. Nanoparticles made by a physical
  • process such as laser ablation have the advantage of being “chemically clean” with no impurities on their surfaces introduced by the chemical preparation process. In the bottom up approach, nanoparticles are created from even smaller structures such as silver ions, which are the outcome of a chemical
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • (N-SWCNT) synthesis was reported by Glerup et al. in 2004 by using arc discharge [111], later followed by laser ablation [112] and many different variations of chemical vapor deposition methods [113][114][115][116][117][118][119][120][121][122][123][124][125] (see also [33][34]). Nitrogen-doped
  • configuration in graphene were reported by STM [32] and TEM/EELS [30]. The synthesis of boron-doped SWCNTs has mainly been successful through the use of high-temperature techniques, i.e., arc-discharge [23][179] and laser ablation [180]. Identification of dopants was initially mainly via TEM/EELS measurements
PDF
Album
Review
Published 15 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • ][29], ball milling [30][31][32][33][34][35], laser ablation [36][37][38], and low temperature methods [39][40][41] were reported. The CVD and ball milling methods are currently the two most widely used methods for the synthesis of BNNTs. In this review, the most important BNNT synthesis methods are
  • produced over the duration of a 50 h annealing step in the presence of N2 gas at 1100 °C. Laser ablation method The synthesis of single- or double-walled BNNTs can generally be achieved using laser ablation [36][37][38]. It was reported that the only way to synthesize single-walled BNNTs (SWBNNTs) was by
PDF
Album
Review
Published 08 Jan 2015

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • mechanisms and final effect. Mechanisms relevant to the laser nanostructuring (LNS) of thin metal films are often discussed in the broader context of the non-equilibrium processes due to pulsed-laser interaction at time scales from micro- to femto-seconds and with nanofabrication by material ablation and
PDF
Album
Review
Published 13 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • size of the nanomaterial itself [87][88][89], as well as on the presence of metal contaminants and the residues of the GO preparation method in graphene samples [90]. Biomedical applications of graphene and its derivatives range from photothermal tumour ablation therapy to biosensors, from gene therapy
PDF
Album
Correction
Review
Published 23 Oct 2014

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • toxicological studies. Nanoparticles synthesized by pulsed laser ablation in liquid are a promising alternative as this synthesis route provides totally ligand-free nanoparticles. The first part of this article reviews recent methods that allow the size control of laser-fabricated nanoparticles, focusing on
  • paragraph of this article highlights the recent progress concerning the synthesis of composition controlled alloy nanoparticles by laser ablation in liquids. Here, binary and ternary alloy nanoparticles with totally homogeneous elemental distribution could be fabricated and the composition of these
  • , mammalian cells and bacteria are considered. Keywords: albumin; gold-silver; implant alloy; laser ablation; nickel-titanium; size control; wear debris; Introduction The widespread use of medical implants consisting of metals (e.g., gold coatings [1]) and alloys (e.g., NiTi, CoCr, stainless steel) [2][3][4
PDF
Album
Video
Review
Published 12 Sep 2014

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

  • Moritz Nazarenus,
  • Qian Zhang,
  • Mahmoud G. Soliman,
  • Pablo del Pino,
  • Beatriz Pelaz,
  • Susana Carregal-Romero,
  • Joanna Rejman,
  • Barbara Rothen-Rutishauser,
  • Martin J. D. Clift,
  • Reinhard Zellner,
  • G. Ulrich Nienhaus,
  • James B. Delehanty,
  • Igor L. Medintz and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1477–1490, doi:10.3762/bjnano.5.161

Graphical Abstract
  • corona [93][94]. The protein corona has a significant impact on how NPs interact with cells and thus will be discussed in the following in more detail. NPs can, in principle, be synthesized in water without any organic surface coating, for example by laser ablation [129][130][131]. However, also to NPs
PDF
Album
Review
Published 09 Sep 2014

Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

  • Dickson Joseph,
  • Nisha Tyagi,
  • Christian Geckeler and
  • Kurt E.Geckeler

Beilstein J. Nanotechnol. 2014, 5, 1452–1462, doi:10.3762/bjnano.5.158

Graphical Abstract
  • lower costs and minimal side effects [24]. Because of their biocompatibility, noble metal nanoparticles, particularly AuNPs, are more preferable in various biomedical applications, including highly sensitive diagnostic assays [25], thermal ablation, radiotherapy enhancement [26][27][28], as well as for
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • demonstrating effective ablation of Kupffer cells in our system (Figure 6A). Furthermore, consecutive injections of pure lipid micelles or micelles containing either QDs or SPIOs in the presence or absence of Kupffer cells had no acute influence on TNFα or Cxcl10 expression (Figure 6B, C) indicating that heavy
  • biopsies were taken and processed for transmission electron microscopy (TEM) as described [18][20]. Micrographs were obtained with a FEI Eagle 4k CCD camera and a Technai 20 TEM operated at 200 kV. Clodronate-mediated ablation of Kupffer cells Procedure was performed as described recently [35]. Briefly
  • uptake into hepatocytes is dependent on apolipoprotein E. Impact of QDs– and SPIOs–lipid micelles on hepatic gene expression after ablation of Kupffer cells. Wild type und clodronate-treated BALB/c wild type mice were intravenously injected with PBS (control), lipid micelles, SPIOs-micelles and QDs
PDF
Album
Full Research Paper
Published 02 Sep 2014

Dry friction of microstructured polymer surfaces inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe,
  • Elena Fadeeva and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1091–1103, doi:10.3762/bjnano.5.122

Graphical Abstract
  • originated from moulds of polishing paper (FibrMet Discs, Buehler GmbH, Düsseldorf, Germany) with different grain sizes (Ra: 0.3 µm, 1 µm, 3 µm, 9 µm, and 12 µm) (Figure 3b). The master for the third type of surfaces was produced from zirconium oxide surface microstructured by femtosecond laser ablation
PDF
Album
Full Research Paper
Published 21 Jul 2014

Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development

  • Ulrike Taylor,
  • Wiebke Garrels,
  • Annette Barchanski,
  • Svea Peterson,
  • Laszlo Sajti,
  • Andrea Lucas-Hahn,
  • Lisa Gamrad,
  • Ulrich Baulain,
  • Sabine Klein,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2014, 5, 677–688, doi:10.3762/bjnano.5.80

Graphical Abstract
  • to the cytotoxicity of silver ions [42]. In order to exclude any cross-effects of stabilizers or reducing agents, which are difficult to exclude in precursor-based chemically produced gold and silver nanoparticles, the particles for this study were synthesized by laser ablation of a bulk solid target
  • can unfold toxic properties of their own [78]. The studies performed on avian embryos and the experiments presented here employed particles synthesized by physical means, an electric non-explosive method and laser ablation in water, respectively. Those methods produce colloids completely free of any
  • to nanoparticles consists in the ablation of a target in liquid media by intense laser radiation, leading to an ejection of its constituent and the formation of a colloidal nanoparticle solution (Figure 1A), released into pure water after the collapse of the laser-induced cavitation bubble [45][79
PDF
Album
Full Research Paper
Published 21 May 2014

Energy dissipation in multifrequency atomic force microscopy

  • Valentina Pukhova,
  • Francesco Banfi and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2014, 5, 494–500, doi:10.3762/bjnano.5.57

Graphical Abstract
  • action. Moreover, the techniques outlined in this work will find applications in a variety of fields of interest for nanotechnology. Few-cycle AFM will be useful to characterize the mechanical contact properties of nanostructures produced by femtosecond laser ablation [22], while wavelets techniques will
PDF
Album
Correction
Full Research Paper
Published 17 Apr 2014

A catechol biosensor based on electrospun carbon nanofibers

  • Dawei Li,
  • Zengyuan Pang,
  • Xiaodong Chen,
  • Lei Luo,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2014, 5, 346–354, doi:10.3762/bjnano.5.39

Graphical Abstract
  • development, various methods used for CNFs preparation are established, such as arc-discharge [21], laser ablation [22], chemical vapor deposition (CVD) methods [23]. Electrospinning, which is known as a facile and convenient process, can produce nanofibers or microfibers with different diameters while using
PDF
Album
Full Research Paper
Published 24 Mar 2014

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • of both the nanostructure itself by local melting and the substrate by ablation at the positions of the hot spots may be used. The interaction of plasmonic structures with their surroundings can be employed to tune their optical properties, e.g., by using a dielectric phase change material like
PDF
Editorial
Published 19 Feb 2014
Other Beilstein-Institut Open Science Activities