Search results

Search for "binding energies" in Full Text gives 169 result(s) in Beilstein Journal of Nanotechnology.

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • binding energies of 51 transition-metal dichalcogenides. We follow the same approach here, taking a constant ε to estimate the binding energies. We adopt isotropic envelopes, simplifying the calculations while keeping the physical picture [37]. In this approximation, the 2D bound state of hydrogen is
  • describe shallow states in semiconductors, thus the band gap energy of the considered material has to be much larger than the binding energies EB. In order to implement this condition, we consider the generally unknown dielectric constant as a free parameter and estimate its minimum value required for the
  • small ε region is expanded. In general, in this yellow–orange–red region we find the first three materials in Table 1, and possibly silicene and germanene if their band gap energies were suitably enhanced. In order to estimate binding energies and Bohr radii, we assume ε ≈ 5 for the first three
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • photoelectrons were excited by an Mg Kα X-ray source. The X-ray anode was operated at 15 keV and 300 W. An Omicron Argus hemispherical electron analyzer with a round aperture of 4 mm was used for analyzing the emitted photoelectrons. The binding energies were corrected using the background C 1s line (285.0 eV
  • 4f7/2 and 4f5/2 excitations differs from the statistical ratio of 4:3 and the linewidths (FWHM) are not equal. The size of the clusters can also affect the symmetry of the Au 4f7/2 peak on the side of higher binding energies, and the asymmetry increases with decreasing cluster size. In our
PDF
Album
Full Research Paper
Published 28 Sep 2018

Surface energy of nanoparticles – influence of particle size and structure

  • Dieter Vollath,
  • Franz Dieter Fischer and
  • David Holec

Beilstein J. Nanotechnol. 2018, 9, 2265–2276, doi:10.3762/bjnano.9.211

Graphical Abstract
  • estimate the surface energy, the binding energy of the atoms with the least coordination number must be selected. Since this is, to some extent, a random process, the scatter of these binding energies gives an indication for the scattering of the result. These considerations led to a value of 1.51 ± 0.68 J
PDF
Album
Review
Published 23 Aug 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • ) [14]. A high ionicity of bond (IOB) and strong negative electron affinity (X) of O result in a strong localization of Si-NC valence electrons. This localization corresponds to increased binding energies – the ICT shifts all MOs away from Evac. N is the only anionic element with a positive X [29] which
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • the graphitic configuration at 400–401 eV [4][95][96]. At slightly higher binding energies with respect to graphitic N, the component was assigned to graphitic valley N [97], which means a graphitic configuration close to a vacancy or edge (N4 in Figure 6a). Nitrogen oxide is usually found at binding
  • molecular oxygen, the N 1s core level spectrum changes its line shape. In particular, the side of higher binding energies (around 401 eV) is quenched. These changes indicate that graphitic nitrogen is involved in the observed mechanism. The adsorbed oxygen molecule is dissociated and the two O atoms
  • energies higher than 402 eV [98]. Other C–N components, such as single bonds, N adatoms or Stone–Wales defects (three-fold coordinated N atoms comprised in two pairs of five-membered and seven-membered rings), may be found at the position corresponding to pyrrolic nitrogen. Hence, their precise
PDF
Album
Review
Published 18 Jul 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • calculated using sbeRG = qRG∙EsRG + qC∙0.5∙(EsRG + EsC) and the surface binding energy for carbon is calculated using sbeC = qRG∙0.5∙(EsRG + EsC) + qC∙EsC∙sbeRG and sbeC are the surface binding energy of noble gas and carbon atoms in the target, EsRG and EsC are the atomic surface binding energies for the
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

Synthesis of a MnO2/Fe3O4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation

  • Zishun Li,
  • Xuekun Tang,
  • Kun Liu,
  • Jing Huang,
  • Yueyang Xu,
  • Qian Peng and
  • Minlin Ao

Beilstein J. Nanotechnol. 2018, 9, 1940–1950, doi:10.3762/bjnano.9.185

Graphical Abstract
  •  6b–d. In Figure 6b, two peaks with binding energies of 710.8 and 724.1 eV are assigned to Fe 2p3/2 and Fe 2p1/2 peaks, which are mainly due to the FeO and Fe2O3; moreover, satellite peaks at 719.32 eV and 732.8 eV can be observed. These are the typical characteristics of the Fe3O4 structure [32]. The
  • Mn 2p region (Figure 6c) exhibits two individual peaks at 653.9 and 642.2 eV, attributed to the Mn 2p1/2 and Mn 2p3/2 binding energies, respectively. As a result, the spin energy separation of Mn 2p peaks can be calculated as 11.7 eV, which is well in agreement with reports for MnO2 [33]. In Figure
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2018

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

  • Marvin Siebels,
  • Lukas Mai,
  • Laura Schmolke,
  • Kai Schütte,
  • Juri Barthel,
  • Junpei Yue,
  • Jörg Thomas,
  • Bernd M. Smarsly,
  • Anjana Devi,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2018, 9, 1881–1894, doi:10.3762/bjnano.9.180

Graphical Abstract
  • not done, because matching of the F Kα1 binding energy against the Lα1 or Lβ1 binding energies for Eu, Gd and Er is not very accurate. The measured oxidation state 3+ of the rare-earth metals in the fluorides was corroborated by high-resolution X-ray photoelectron spectroscopy (HR-XPS) (Figure 4 and
  • Figures S4c, S5c, S6d, Supporting Information File 1) through comparison to the reported binding energies of metal(III) fluorides/oxides, metal(0) and organic fluorine/oxygen (Table 2) [48][49]. The measured metal and fluorine XPS values are in good agreement with the values of metal(III) fluorides that
  • are given in literature and thereby exclude the formation of metal(0) and the presence of organic fluoride (from residual IL). In addition, the formation of metal oxides can be excluded, since the measured binding energies of oxygen match very well with the literature values of organic oxygen [48][49
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  •  4b shows the Ag 3d doublets with binding energies of 368.1 eV and 374.1 eV, corresponding to Ag 3d5/2 and Ag 3d3/2, respectively. According to the literature [27][28], these peaks can be attributed to metallic silver (Ag0). Figure 4d and Figure 4h show the high-resolution XPS spectra of Ti 2p of Ag
PDF
Album
Full Research Paper
Published 14 Jun 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • panel), the S 2p XPS peaks located at 168.7 eV with a tailing at higher binding energies could be attributed to S(VI) species corresponding to the S(VI) cation in S=O and S–O bonds, occurring when Ti(IV) is interstitially replaced by sulfur atoms. In addition, no signal for anionic S species are
PDF
Album
Full Research Paper
Published 04 Jun 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • exciton binding energies [43][44][45] are 0.25 and 0.14 eV for SiAs2 and GeAs2, respectively. Semiconductors with exciton energies in this range of a few hundred millielectronvolts are supposed to play a key role in photovoltaic applications [46]. Conclusion We have presented 2D monolayer compounds of
  • . Additionally, the exciton binding energies are quite low and are comparable to quantum dot semiconductors. It might be possible that these semiconductors could be synthesized as quantum dots and studied in further detail. Band gap tuning appears also possible and could be used to tailor the compounds for
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets

  • Yue Shen,
  • Ying Wang,
  • Yuan Zhou,
  • Chunxi Hai,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 1146–1155, doi:10.3762/bjnano.9.106

Graphical Abstract
  • corresponding descriptions are shown in Table 1. The deconvoluted peaks A–D in Figure 1a centered at the binding energies of 284.5, 285.5, 286.9, and 288.5 eV, respectively, correspond to C=C/C–C in aromatic rings, C–O (epoxy and alkoxy), C=O, and COOH groups, respectively [20]. After reduction (sample 5), the
PDF
Album
Full Research Paper
Published 11 Apr 2018

Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer

  • Abdulrahman Altin,
  • Maciej Krzywiecki,
  • Adnan Sarfraz,
  • Cigdem Toparli,
  • Claudius Laska,
  • Philipp Kerger,
  • Aleksandar Zeradjanin,
  • Karl J. J. Mayrhofer,
  • Michael Rohwerder and
  • Andreas Erbe

Beilstein J. Nanotechnol. 2018, 9, 936–944, doi:10.3762/bjnano.9.86

Graphical Abstract
  • consequently present for the main core levels attributed to ZnO (Zn 3d, Zn 2p) and β-CD (C 1s). A common tendency is a shift of the levels towards the lower binding energies with decreasing depth. A similar trend was observed for the VB levels. From TOA = 70° to 45°, the onset of the VB shifted by ≈0.5 eV
  • higher TOA probing deeper into the film, the defect contribution is suppressed by the dominating rest of the photoemission signal, while for low TOA probing surface regions, the defects are dominating. While the variation of binding energies comprises both chemical shift and changes in the local
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2018

Effect of annealing treatments on CeO2 grown on TiN and Si substrates by atomic layer deposition

  • Silvia Vangelista,
  • Rossella Piagge,
  • Satu Ek and
  • Alessio Lamperti

Beilstein J. Nanotechnol. 2018, 9, 890–899, doi:10.3762/bjnano.9.83

Graphical Abstract
  • binding energies and relative peak areas of only “v” components for convenience. From the area of the different components of the Ce 3d spectrum (Table 2) we estimate the relative concentrations of Ce3+ and Ce4+ [25]. Similarly, considering the O 1s region, three components are identified and, from low to
PDF
Album
Full Research Paper
Published 15 Mar 2018

Facile chemical routes to mesoporous silver substrates for SERS analysis

  • Elina A. Tastekova,
  • Alexander Y. Polyakov,
  • Anastasia E. Goldt,
  • Alexander V. Sidorov,
  • Alexandra A. Oshmyanskaya,
  • Irina V. Sukhorukova,
  • Dmitry V. Shtansky,
  • Wolgang Grünert and
  • Anastasia V. Grigorieva

Beilstein J. Nanotechnol. 2018, 9, 880–889, doi:10.3762/bjnano.9.82

Graphical Abstract
  • valence state of the silver at the surface of the mp-Ag (Figure 1f) obtained in 1:10 Ag2O/NaBH4 molar ratio. The binding energies at 368.3(2) eV and 374.2(2) eV are related to Ag 3d5/2 and Ag 3d3/2 binding energies, respectively. According to the NIST database (CAS registry No 7440-22-4) these bands
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • , and exemplary data are shown in Figure 2. XPS peaks of Au 4f7/2 and Ag 3d5/2 were assigned to two and/or three components, i.e., Auδ+, Au0 and Auδ− for binding energies (BE) of ca. 83.0, 82.5 and 82.0 eV, respectively, and Ag0, Ag+ and Ag2+ for BE of ca. 368.4, 367.4 and 366.3 eV, respectively. It was
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Graphene composites with dental and biomedical applicability

  • Sharali Malik,
  • Felicite M. Ruddock,
  • Adam H. Dowling,
  • Kevin Byrne,
  • Wolfgang Schmitt,
  • Ivan Khalakhan,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Lok Kumar Shrestha,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2018, 9, 801–808, doi:10.3762/bjnano.9.73

Graphical Abstract
  • oxygen content as the O 1s/C 1s ratios are very similar. The binding energies (Eb) ≈284.6 eV corresponds to C–H, C–C, (CH2)n and C=C bonds that are characteristic of graphite/graphene, ≈286 eV corresponds to C–O–C, ≈288.5 eV corresponds to O–C=O, ≈531.5–532 eV corresponds to C–O and ≈533 eV corresponds
PDF
Album
Full Research Paper
Published 05 Mar 2018

Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating

  • Błażej Scheibe,
  • Radosław Mrówczyński,
  • Natalia Michalak,
  • Karol Załęski,
  • Michał Matczak,
  • Mateusz Kempiński,
  • Zuzanna Pietralik,
  • Mikołaj Lewandowski,
  • Stefan Jurga and
  • Feliks Stobiecki

Beilstein J. Nanotechnol. 2018, 9, 591–601, doi:10.3762/bjnano.9.55

Graphical Abstract
  • with six components. The two peaks positioned at lowest binding energies were assigned to C–C and C=C bonded carbon [54]. The next three are believed to originate from carbon atoms in various surface functional groups, such as C–O, C–N, C=O and O=C–OH [55]. The highest binding energy component was
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2018

Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

  • Ragesh Kumar T P,
  • Paul Weirich,
  • Lukas Hrachowina,
  • Marc Hanefeld,
  • Ragnar Bjornsson,
  • Helgi Rafn Hrodmarsson,
  • Sven Barth,
  • D. Howard Fairbrother,
  • Michael Huth and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2018, 9, 555–579, doi:10.3762/bjnano.9.53

Graphical Abstract
  • the experiments described in Figure 9 is minimal except for the lowest electron doses, where the measured dose based on electron irradiation alone is somewhat underrepresented. Figure 10 shows that the fractional decrease in the coverage of oxygen atoms and the change in Ru 3d5/2 binding energies both
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • software (version 2.3.17) after subtraction of the Shirley-type background employing Gaussian–Lorentzian (G–L) peaks with the fixed G–L percentage of 30%. The values of binding energies (BEs) of C 1s, N 1s, O 1s, B 1s, and Ag 3d components were taken from the literature [44][45][46][47]. Ag+ ion release
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • stemming from silk, PEO, or residual EtAcAc connected to the TNPs [62]. The O 1s binding energies at 531.8 eV and 533.3 eV can be attributed to Ti–OH motives [63]. The main N 1s peak at 400.1 eV is attributed to the amide and amine groups (peptide bonds) of silk (Table S3, Supporting Information File 1
  • File 1 summarizes the XPS binding energies, assignments to the respective binding partners, and atomic concentrations for the samples TS_Au2.5 and TPS_Au2.5. The chemical composition of all materials is fairly similar except for the fractions of Au and Ti. TS_Au2.5 has a higher amount of Au (2.2 atom
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

  • Alexa Schmitz,
  • Kai Schütte,
  • Vesko Ilievski,
  • Juri Barthel,
  • Laura Burk,
  • Rolf Mülhaupt,
  • Junpei Yue,
  • Bernd Smarsly and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2017, 8, 2474–2483, doi:10.3762/bjnano.8.247

Graphical Abstract
  • in Supporting Information File 1) can be used to further support the formation of metal fluorides. The measured electron binding energies of the metals agree with those of the metals in the oxidation states +2 (Fe, Co) or +3 (Pr, Eu) and significantly higher than those of the state M0. The F 1s
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • only a very weak shake-up peak at about 791 eV. If Co2+/Co3+ oxidation states coexist, a plateau in the range of 783–792 eV will be observed instead of two distinct shake-up peaks [31][34]. In Ni 2p spectrum of the CeO2–NiO sample (Figure 7e), the binding energies at 855.6 and 873.4 eV are ascribed to
  • laser of 532 nm. Surface analysis was obtained by an X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250Xi) with Al Kα radiation. All binding energies were corrected for surface charging by use of the C 1s peak (284.8 eV) of adventitious carbon as reference. The M contents in CeO2–MOx samples were
PDF
Album
Full Research Paper
Published 16 Nov 2017

Au55, a stable glassy cluster: results of ab initio calculations

  • Dieter Vollath,
  • David Holec and
  • Franz Dieter Fischer

Beilstein J. Nanotechnol. 2017, 8, 2221–2229, doi:10.3762/bjnano.8.222

Graphical Abstract
  • energy formula in the form of γ = C/a. The constant C is given in Table 2. Consequently, the value of C from Equation 1 lies between the two values obtained for the application of the Kelvin equation for various binding energies. This fact, i.e., that atomistic (Equation 1) and continuum (Kelvin equation
PDF
Album
Full Research Paper
Published 25 Oct 2017

Ta2N3 nanocrystals grown in Al2O3 thin layers

  • Krešimir Salamon,
  • Maja Buljan,
  • Iva Šarić,
  • Mladen Petravić and
  • Sigrid Bernstorff

Beilstein J. Nanotechnol. 2017, 8, 2162–2170, doi:10.3762/bjnano.8.215

Graphical Abstract
  • emission is normally characterized by two peaks characteristic for the spin–orbit splitting of the Ta 4f energy level into the 4f7/2 and 4f5/2 levels, respectively. Therefore, we use two sets of spin–orbit doublets to fit our XPS results. The first doublet at binding energies, BE, of 22.5 and 24.3 eV
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2017
Other Beilstein-Institut Open Science Activities