Search results

Search for "chemical vapor deposition (CVD)" in Full Text gives 109 result(s) in Beilstein Journal of Nanotechnology.

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • compared to CVD, and Chemical vapor deposition (CVD): high quality, most common method with low batch yield (≈30 mg/day). In the arc-discharge method, the carbon is evaporated by helium plasma ignited by high current passed through an opposing carbon anode and cathode. This method requires the use of a
  • acid [53]. In both the arc discharge and laser ablation methods, bundles of MWNTs and SWNTs held together by van der Waals forces are generated by the condensation of carbon atoms generated from the evaporation of solid carbon sources. The third method, chemical vapor deposition (CVD), involves the
  • few defects [134]. Chemical vapor deposition (CVD). The CVD method is commonly used to produce large-area uniform graphene films [77][135]. Similar to the CVD method used to grow CNTs, graphene can be grown from gases containing C on catalytic metal surfaces or by surface segregation of C dissolved in
PDF
Album
Review
Published 01 Feb 2016

Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles

  • Ilana Perelshtein,
  • Anat Lipovsky,
  • Nina Perkas,
  • Tzanko Tzanov and
  • Aharon Gedanken

Beilstein J. Nanotechnol. 2016, 7, 1–8, doi:10.3762/bjnano.7.1

Graphical Abstract
  • is the direct impregnation of textiles in the reactant solution. Other methods such as chemical vapor deposition (CVD) of silver NPs on textiles have also been used [1]. Among the various other coating techniques the sonochemical immobilization was carried out on a large variety of substrates
PDF
Album
Full Research Paper
Published 04 Jan 2016

Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data

  • Beti Andonovic,
  • Abdulakim Ademi,
  • Anita Grozdanov,
  • Perica Paunović and
  • Aleksandar T. Dimitrov

Beilstein J. Nanotechnol. 2015, 6, 2113–2122, doi:10.3762/bjnano.6.216

Graphical Abstract
  • attracted great interest in terms of fundamental studies as well as potential applications [2]. To date, several methods have been used to produce high-quality graphene sheets, such as mechanical exfoliation of graphite, chemical vapor deposition (CVD) of gases containing carbon atoms on the surface of
PDF
Album
Full Research Paper
Published 06 Nov 2015

Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties

  • Andrea Capasso,
  • Theodoros Dikonimos,
  • Francesca Sarto,
  • Alessio Tamburrano,
  • Giovanni De Bellis,
  • Maria Sabrina Sarto,
  • Giuliana Faggio,
  • Angela Malara,
  • Giacomo Messina and
  • Nicola Lisi

Beilstein J. Nanotechnol. 2015, 6, 2028–2038, doi:10.3762/bjnano.6.206

Graphical Abstract
  • Moro 5, 00185 Rome, Italy Dipartimento di Ingegneria dell'Informazione, delle Infrastrutture e dell'Energia Sostenibile (DIIES), Università “Mediterranea” di Reggio Calabria, 89122 Reggio Calabria, Italy 10.3762/bjnano.6.206 Abstract Graphene films were produced by chemical vapor deposition (CVD) of
  • production of high-quality graphene for electronics is probably chemical vapor deposition (CVD). By this technique it is possible to produce graphene with large grain sizes and high crystalline quality over large areas [14]. Nonetheless, the sheet resistance of most CVD-graphene films (even in single-crystal
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2015

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

  • Rachel M. Thorman,
  • Ragesh Kumar T. P.,
  • D. Howard Fairbrother and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2015, 6, 1904–1926, doi:10.3762/bjnano.6.194

Graphical Abstract
  • attributes: i) sufficient vapor pressure to facilitate their introduction into a vacuum chamber, ii) chemical stability under ambient conditions and iii) non-toxicity and easy handling. These criteria are the same as those that define suitable precursors for chemical vapor deposition (CVD) [4][5]. Because of
PDF
Album
Review
Published 16 Sep 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • electronic scattering and phonon scattering are very likely to be disturbed at the boundary. The fundamental studies on the atomic structure of graphene have a significant impact on the large-scale applications of graphene. Graphene synthesized through chemical vapor deposition (CVD) often exhibits a
PDF
Album
Review
Published 16 Jul 2015

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • makes the localized deposition of this metal very attractive for applications in nano-electronics. The organometallic hexafluoroacetylacetonate (hfac)-based Cu(I) and Cu(II) precursors are widely used in chemical vapor deposition (CVD) methods due to their stability and high vapor pressure. They allow
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

Using natural language processing techniques to inform research on nanotechnology

  • Nastassja A. Lewinski and
  • Bridget T. McInnes

Beilstein J. Nanotechnol. 2015, 6, 1439–1449, doi:10.3762/bjnano.6.149

Graphical Abstract
  • reporting arc-discharge and laser vaporization synthesis methods [26]. Chemical vapor deposition (CVD) methods were also mentioned as being invented frequently. Top patenting companies included NEC, Samsung and Sony. Their dynamic tool revealed a possible patent vacuum of using low temperature or microwave
PDF
Review
Published 01 Jul 2015

Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

  • Mykola Telychko,
  • Jan Berger,
  • Zsolt Majzik,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2015, 6, 901–906, doi:10.3762/bjnano.6.93

Graphical Abstract
  • hinders applications of epitaxial graphene in the nanoelectronics [1]. The two main methods of epitaxial graphene growth are chemical vapor deposition (CVD) on metal surfaces [2] and annealing of silicon carbide (SiC) [3]. The large conductivity of metal substrates leaves graphene on metals as model-only
PDF
Album
Full Research Paper
Published 07 Apr 2015

Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

  • Florian Waltz,
  • Hans-Christoph Schwarz,
  • Andreas M. Schneider,
  • Stefanie Eiden and
  • Peter Behrens

Beilstein J. Nanotechnol. 2015, 6, 799–808, doi:10.3762/bjnano.6.83

Graphical Abstract
  • more than 2100 publications in 2013 (Thomson Reuters, Web of Knowledge). Several methods have been used to deposit ZnO on different substrates, for example, pulsed laser deposition (PLD) [11], chemical vapor deposition (CVD) [12][13], as well as wet chemical approaches such as sol–gel synthesis [14
PDF
Album
Full Research Paper
Published 24 Mar 2015

Applications of three-dimensional carbon nanotube networks

  • Manuela Scarselli,
  • Paola Castrucci,
  • Francesco De Nicola,
  • Ilaria Cacciotti,
  • Francesca Nanni,
  • Emanuela Gatto,
  • Mariano Venanzi and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 792–798, doi:10.3762/bjnano.6.82

Graphical Abstract
  • constructing three-dimensional random meshes from their overlapping. Recently, Gui and co-workers [6] fabricated CNT-sponges through a chemical vapor deposition (CVD) process during which a catalyst precursor (ferrocene) dissolved in dichlorobenzene, which acted as carbon precursor, was injected in the reactor
PDF
Album
Full Research Paper
Published 23 Mar 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • , various methods have been reported in the literature to produce amorphous and polycrystalline ZnO nanomaterials, especially in the form of nanorods. Also, several deposition methods have been reported to fabricate single-crystal ZnO nanorods, such as RF and DC sputtering [6], chemical vapor deposition
  • (CVD) [7], molecular beam epitaxy (MBE) [8], pulsed laser deposition (PLD) [9], vapor phase transport (VPT) [10], and thermal evaporation [11]. However, these methods are considered to be high-cost techniques since they require complex, expensive equipment, high vacuum conditions and high operation
PDF
Album
Full Research Paper
Published 12 Mar 2015

Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum

  • Andrea Candini,
  • Nils Richter,
  • Domenica Convertino,
  • Camilla Coletti,
  • Franck Balestro,
  • Wolfgang Wernsdorfer,
  • Mathias Kläui and
  • Marco Affronte

Beilstein J. Nanotechnol. 2015, 6, 711–719, doi:10.3762/bjnano.6.72

Graphical Abstract
  • suppression of conductance fluctuations [14]. Recent works have successfully made use of graphene for the realization of electrodes in molecular devices [10][17]. Specifically, parallel multi-junctions devices have been fabricated in chemical vapor deposition (CVD) graphene by electron beam lithography and
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2015

Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction

  • Carla Aramo,
  • Antonio Ambrosio,
  • Michelangelo Ambrosio,
  • Maurizio Boscardin,
  • Paola Castrucci,
  • Michele Crivellari,
  • Marco Cilmo,
  • Maurizio De Crescenzi,
  • Francesco De Nicola,
  • Emanuele Fiandrini,
  • Valentina Grossi,
  • Pasqualino Maddalena,
  • Maurizio Passacantando,
  • Sandro Santucci,
  • Manuela Scarselli and
  • Antonio Valentini

Beilstein J. Nanotechnol. 2015, 6, 704–710, doi:10.3762/bjnano.6.71

Graphical Abstract
  • obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD) technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction
PDF
Album
Full Research Paper
Published 10 Mar 2015

Simple approach for the fabrication of PEDOT-coated Si nanowires

  • Mingxuan Zhu,
  • Marielle Eyraud,
  • Judikael Le Rouzo,
  • Nadia Ait Ahmed,
  • Florence Boulc’h,
  • Claude Alfonso,
  • Philippe Knauth and
  • François Flory

Beilstein J. Nanotechnol. 2015, 6, 640–650, doi:10.3762/bjnano.6.65

Graphical Abstract
  • individually coated. Various fabrication efforts have been attempted to achieve a true core–shell p–n junction. For example, chemical vapor deposition (CVD) [10][11] and atomic layer deposition (ALD) [12] are methods that can be employed to obtain this type of nanostructured junction, however, they suffer from
PDF
Album
Full Research Paper
Published 04 Mar 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • ], and flavin mononucleotides (FMN) [19]. The synthesis of BNNTs was first reported in 1995 [20] by Chopra, based on an arc discharge method. Following the first report, several methods including arc discharge [20][21][22], chemical vapor deposition (CVD) [23][24][25][26], substitution reactions [27][28
  • precursor) and MoO3 (as the catalyst) under N2(g) atmosphere at 1500 °C for 30 min [29]. Although this method can be used to produce BNNTs, the outcome is not always pure BNNTs but rather some B- and N-doped CNTs result in addition [48]. Chemical vapor deposition Chemical vapor deposition (CVD) is a well
PDF
Album
Review
Published 08 Jan 2015

Sequence-dependent electrical response of ssDNA-decorated carbon nanotube, field-effect transistors to dopamine

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2113–2121, doi:10.3762/bjnano.5.220

Graphical Abstract
  • repeated-ssDNA-decorated SWCNT FETs to DA, in the presence and absence of UA. Experimental SWCNT growth and FET fabrication Long, individual SWCNTs were grown on n+-doped Si capped by 1 µm of SiO2, thermally grown via chemical vapor deposition (CVD) using 0.01 M FeCl3 ethanol solution as the catalytic
PDF
Album
Full Research Paper
Published 13 Nov 2014

Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An,
  • Yani Zhang,
  • Chee How Wong and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2081–2091, doi:10.3762/bjnano.5.217

Graphical Abstract
  • chemical vapor deposition (CVD) process at 950 ºC was utilized to grow SWCNTs, in which 0.01 M FeCl3 ethanol solution was used as the catalytic precursor similar to our previous works [22][23]. Fabrication of SWCNT-based FETs We prepared three types of SWCNT-based FETs with different channel lengths, L
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Cathode lens spectromicroscopy: methodology and applications

  • T. O. Menteş,
  • G. Zamborlini,
  • A. Sala and
  • A. Locatelli

Beilstein J. Nanotechnol. 2014, 5, 1873–1886, doi:10.3762/bjnano.5.198

Graphical Abstract
  • vapor deposition (CVD) technique. CVD utilizes transition metal catalysts as a means to promote the dissociative adsorption of gases such as ethylene or methane, which can readily deliver the carbon atoms required for island nucleation and growth. LEEM is widely employed to image the growth process; the
  • peak photoelectron current in XPEEM. SPELEEM studies of graphene epilayers LEEM has found ample use in graphene research with its high structural sensitivity and video acquisition rate allowing for dynamic measurements of film growth. In such experiments, graphene is typically obtained by the chemical
PDF
Album
Review
Published 27 Oct 2014

Fringe structures and tunable bandgap width of 2D boron nitride nanosheets

  • Peter Feng,
  • Muhammad Sajjad,
  • Eric Yiming Li,
  • Hongxin Zhang,
  • Jin Chu,
  • Ali Aldalbahi and
  • Gerardo Morell

Beilstein J. Nanotechnol. 2014, 5, 1186–1192, doi:10.3762/bjnano.5.130

Graphical Abstract
  • either chemical-solution-derived method or a chemical vapor deposition (CVD) process. Many excellent results have been reported [6][7][8][9]. Systematic and comprehensive reviews of two-dimensional (2D) boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene have been
PDF
Album
Full Research Paper
Published 31 Jul 2014

Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

  • Florian Vollnhals,
  • Martin Drost,
  • Fan Tu,
  • Esther Carrasco,
  • Andreas Späth,
  • Rainer H. Fink,
  • Hans-Peter Steinrück and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2014, 5, 1175–1185, doi:10.3762/bjnano.5.129

Graphical Abstract
  • and film growth, i.e., chemical vapor deposition (CVD) [24]. For Co(CO)3NO, EBID was found up to about 393 K, followed by seeded growth up to about 403 K and spontaneous decomposition at higher temperatures. In the EBID regime, increasing the temperature from 293 to 323 K lowered the carbon content by
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2014

A catechol biosensor based on electrospun carbon nanofibers

  • Dawei Li,
  • Zengyuan Pang,
  • Xiaodong Chen,
  • Lei Luo,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2014, 5, 346–354, doi:10.3762/bjnano.5.39

Graphical Abstract
  • development, various methods used for CNFs preparation are established, such as arc-discharge [21], laser ablation [22], chemical vapor deposition (CVD) methods [23]. Electrospinning, which is known as a facile and convenient process, can produce nanofibers or microfibers with different diameters while using
PDF
Album
Full Research Paper
Published 24 Mar 2014

Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure

  • Kang Xia,
  • Haifei Zhan,
  • Ye Wei and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 329–336, doi:10.3762/bjnano.5.37

Graphical Abstract
  • in the fields of mechanics, photology, electronics and bio-sensing [1][2]. Through the chemical vapor deposition (CVD) method, a graphene–nanotube hybrid structure (GNHS) has been synthesized recently [3][4][5], which evidently demonstrates an improved performance for the application as field
PDF
Album
Full Research Paper
Published 20 Mar 2014

Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

  • Nuri Yazdani,
  • Vipin Chawla,
  • Eve Edwards,
  • Vanessa Wood,
  • Hyung Gyu Park and
  • Ivo Utke

Beilstein J. Nanotechnol. 2014, 5, 234–244, doi:10.3762/bjnano.5.25

Graphical Abstract
  • functionalization [19][20][21][22][23][24]. In practice, however, chemical vapor deposition (CVD) grown CNTs are prone to a sufficient density of surface defect sites to allow for the nucleation of the ceramic at discrete points along the surface of the CNT. The ceramic then grows from these nucleation sites until
PDF
Album
Full Research Paper
Published 05 Mar 2014

Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale

  • Burcin Özdemir,
  • Axel Seidenstücker,
  • Alfred Plettl and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2013, 4, 886–894, doi:10.3762/bjnano.4.100

Graphical Abstract
  • were prepared on top of the previously fabricated Au NP by chemical vapor deposition (CVD) rather than immersion of the silica substrates into OTMS solutions. Like immersion the much faster CVD method results in selective reactions of the methoxysilane functional groups with the silanol groups of the
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2013
Other Beilstein-Institut Open Science Activities