Search results

Search for "microstructure" in Full Text gives 248 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • morphology and microstructure were observed by SEM (JEOL JSM-7100F) and TEM (JEOL JEM-2100F) with an accelerating voltage of 15 kV and 200 kV, respectively. The Raman spectra were recorded on a Raman spectrometer (Renishaw RM 2000) by using a laser with an excitation wavelength of 632.8 nm. Thermogravimetric
PDF
Album
Full Research Paper
Published 19 Aug 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • , and can be irreversibly transformed into a stable rutile structure by heating, this process did not occur during calcination. The anatase–rutile transition occurs between 400 to 1000 °C, and it is dependent on several parameters, such as the size of the nanocrystals, impurity content, microstructure
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • the components in a single homogeneous paste with subsequent thermal annealing. The composition and microstructure of the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy
  • , ultrathin fibers of SiC and metal oxides as well as MO/SiC composites from polymer solutions [16][17][18][19]. The combination of unlimited length, highly porous microstructure, and high surface area come together to create ideal gas sensor materials. In this work, we prepared ZnO/SiC nanocomposite
  • alignment of the wurtzite ZnO and 3C-SiC phases. Adapted from [37] with permission from the American Chemical Society, copyright 2013. Microstructure characteristics and electrophysical properties of ZnO nanofibers, ZnO/SiC nanocomposites and nanocrystalline SiC powder. Sensor response of conductometric gas
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • content. The increase of the crystallite size is attributed to the bond energy of Co–O (397 kJ/mol), which is smaller than that of Fe–O (407 kJ/mol) [25]. The smaller bond energy speeds up the crystallization process, thus increasing the crystallite size in the samples. Microstructure and morphology In
PDF
Album
Full Research Paper
Published 03 Jul 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • isotherms (Figure S2a,b in Supporting Information File 1). The BET specific surface area of the samples Film-1 and Foam-1 was 5 and 58 m2·g−1, respectively. The microstructure of the films was characterized by X-ray diffraction (XRD). The diffractogram of Film-1 displays the main reflections of both
  • : E) and G) pore architecture, I) cell walls. Young’s moduli and electrical conductivity of HNTs/SEP/GNPs/MWCNTs/CHI films (A, C) and foams (B, D), respectively. A) Scheme of an EBC (left) and a biosensor (right) with the electrode microstructure and biocatalytic oxidation of glucose at the bioactive
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process

  • Malek Bibani,
  • Romain Breitwieser,
  • Alex Aubert,
  • Vincent Loyau,
  • Silvana Mercone,
  • Souad Ammar and
  • Fayna Mammeri

Beilstein J. Nanotechnol. 2019, 10, 1166–1176, doi:10.3762/bjnano.10.116

Graphical Abstract
  • refluxing (3, 6 and 15 h). The structure, microstructure and composition of the resulting NPs were then investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence spectroscopy (XRF), respectively. The magnetic properties were also evaluated using standard
PDF
Album
Full Research Paper
Published 04 Jun 2019

A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water

  • Binjing Hu,
  • Qiang Sun,
  • Chengyi Zuo,
  • Yunxin Pei,
  • Siwei Yang,
  • Hui Zheng and
  • Fangming Liu

Beilstein J. Nanotechnol. 2019, 10, 1157–1165, doi:10.3762/bjnano.10.115

Graphical Abstract
  • microstructure. The computational results showed that the dipole-like field covers the entire surface of the rod-like Ce-doped ZnO photocatalyst and is present over the entire range of wavelengths considered. The optimum degradation conditions were determined by orthogonal tests and range analysis, including the
  • catalytic effect from the perspective of catalyst shape and porous microstructure, the robust field-only surface integral method was used to explore the possible mechanism of this rod-like Ce-doped ZnO photocatalyst. Results and Discussion Photocatalytic activity of CZO The effect of different Ce/ZnO molar
  • of ZnO and CZO-4. Obvious differences can be observed between the undoped and cerium-doped ZnO. As demonstrated in Figure 5a, pristine ZnO has a spherical microstructure, while CZO-4 reveals a rod-like microstructure as shown in Figure 5b. It was also reported by Zhou et al. [34] that the as
PDF
Album
Full Research Paper
Published 03 Jun 2019

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • 710119, China Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha and 410083, China 10.3762/bjnano.10.107 Abstract Fe3O4 nanoparticles (FONPs) are magnetic materials with a small band gap and have well-demonstrated
  • FONP powder were measured by UV–vis–NIR spectroscopy, as shown in Figure 3d. From these results, 92% absorbance at 1560 nm can be observed. In Figure 4a–c, the microstructure of the FONP SA is confirmed via scanning electron microscopy (SEM) at the 4, 3 and 1 µm scale, respectively. It can be clearly
PDF
Album
Full Research Paper
Published 20 May 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • ascribed to O–H of absorbed water and the stretching modes of uncondensed amine groups [4]. Obviously, after the combination of CdIn2S4 and CCN, the resulting CISCCN nanocomposites possess similar FTIR spectra as that of the CCN sample. The microstructure and morphology of the as-fabricated CCN and CISCCN3
PDF
Album
Full Research Paper
Published 18 Apr 2019

Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces

  • Yunlu Pan,
  • Wenting Kong,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 866–873, doi:10.3762/bjnano.10.87

Graphical Abstract
  • air-dry oven at 150 °C for 90 min after UV illumination. The switching time from superhydrophilic to superhydrophobic was found to be reduced with increasing heating temperature. Characterization The microstructure of the coating surfaces was studied using scanning electron microscopy (SEM, ZEISS
PDF
Album
Full Research Paper
Published 15 Apr 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • composites in the range of 1000–2000 cm−1. The amorphous degree of the sample was calculated from the relative intensity ratio of the D- and G-bands (ID/IG) as 2.38, 2.93, 3.16 and 3.35 for CNF, PCNF, Cu/PCNF and Cu/CuO/PCNF/TiO2, respectively. The morphology and microstructure of the as-prepared CNF, PCNF
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

An iridescent film of porous anodic aluminum oxide with alternatingly electrodeposited Cu and SiO2 nanoparticles

  • Menglei Chang,
  • Huawen Hu,
  • Haiyan Quan,
  • Hongyang Wei,
  • Zhangyi Xiong,
  • Jiacong Lu,
  • Pin Luo,
  • Yaoheng Liang,
  • Jianzhen Ou and
  • Dongchu Chen

Beilstein J. Nanotechnol. 2019, 10, 735–745, doi:10.3762/bjnano.10.73

Graphical Abstract
  • measured using an ultraviolet–visible–near infrared (UV–vis–NIR) spectrophotometer (UV-4100, Hitachi, Japan). Microstructure observation and phase-composition analyses were performed using a TD-3500 X-ray diffraction (XRD) instrument. For measuring the thickness of the thin films formed on the sample, the
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • catalysts, require the combination of the contradicting properties of graphitic microstructure and porosity. The usage of graphitization catalysts during the synthesis of carbide-derived carbon materials results in materials that combine the required properties, but controlling the microstructure during
  • microstructure and pore structures [20]. To produce CDC with a high content of graphitic structure, there are two possibilities that can be applied (neglecting a post-synthesis treatment after CDC synthesis). The first is very high synthesis temperatures (ca. 1500 °C) [4], which is, however, associated with a
  • carbide-derived carbon would be influenced by the transition-metal catalyst in the shell of each particle. This work studies the use of core–shell carbon/carbide hybrids to immobilize different amounts of graphitization catalyst as illustrated in Figure 1. The resulting microstructure and pore structure
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • binder-free composite electrode, consisting of Ni(OH)2 nanopetals network, Ni nanofoam interlayer and Ni-based metallic glass matrix (Ni(OH)2/Ni-NF/MG) with sandwich structure and good flexibility, was designed and finally achieved. Microstructure and morphology of the Ni(OH)2 nanopetals were
  • decline in the cycling performance of Ni(OH)2/Ni-NF/MG-5, the microstructure of the electrode after 3000 cycles was observed by SEM (Figure 7a,b). It is found that Ni(OH)2 nanopetals become thicker and interweave into a catkin-like morphology. Though a certain amount of nanopetals still remains, the “ion
PDF
Album
Full Research Paper
Published 25 Jan 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • ; and the cross-sectional view for (f) S600 (i) S200, respectively. X-ray diffraction spectra of ZnO NCs for SB (on bare ITO), S600 (on patterned ITO with pore size ≈600 nm), and S200 (on patterned ITO with pore size ≈200 nm). Microstructure characterization of hexagonal-shaped twinned ZnO NCs for the
PDF
Album
Full Research Paper
Published 24 Jan 2019

Relation between thickness, crystallite size and magnetoresistance of nanostructured La1−xSrxMnyO3±δ films for magnetic field sensors

  • Rasuole Lukose,
  • Valentina Plausinaitiene,
  • Milita Vagner,
  • Nerija Zurauskiene,
  • Skirmantas Kersulis,
  • Virgaudas Kubilius,
  • Karolis Motiejuitis,
  • Birute Knasiene,
  • Voitech Stankevic,
  • Zita Saltyte,
  • Martynas Skapas,
  • Algirdas Selskis and
  • Evaldas Naujalis

Beilstein J. Nanotechnol. 2019, 10, 256–261, doi:10.3762/bjnano.10.24

Graphical Abstract
  • substrates in two different technological ways, resulting in different microstructure of the obtained nanostructured films. Such films have an advantage in comparison with the epitaxial films grown on monocrystalline substrates since they exhibit high magnetoresistance (MR) values over a broader temperature
  • range [1]. In this study, we present the possibility to tune and to select the necessary properties of nanostructured LSMO films by changing the film thickness and microstructure in order to obtain higher sensitivity and lower anisotropy, important for magnetic field sensing. Results and Discussion Two
  • of the microstructure and magnetoresistive properties of the films. It was demonstrated that the crystallite dimensions and magnetoresistance magnitude increase with the film thickness. Moreover, the usage of an additional solvent source decreases the growth rate of the films, leading to an increase
PDF
Album
Letter
Published 23 Jan 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • relationship between Li-ion conductivity and the microstructure of the solid-state electrolyte lithium aluminum titanium phosphate films [10]. Furthermore, dielectric properties play a role for the storage of electrochemical energy. Ying Wang and co-workers report on a novel method for the characterization of
PDF
Editorial
Published 10 Jan 2019

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • microstructure is not considerably lower than that of coarser microstructure [14]. Greiner et al. found that with increasing aspect ratio of micropattern features, their compliance increases, resulting in a better conformability to substrate roughness [20]. Hierarchical geometries, that is, architectures with
  • -12 substrate. We assume that with large dimples indent deeply into the PVA substrates, generating mechanical interlocking and a relatively high contact area. The microstructure starts moving when this interlocking is lost due to deformation of the substrate. A low indentation depth, as it is expected
  • measurements. It is possible that the same protrusion formation as described for pull-off force measurements also holds for friction measurements, with the substrate protruding into the sub-surface voids of the microstructure. Similar to pull-off experiments, suction forces cannot be ruled out either. Effect
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Amorphous NixCoyP-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution

  • Yong Li,
  • Peng Yang,
  • Bin Wang and
  • Zhongqing Liu

Beilstein J. Nanotechnol. 2019, 10, 62–70, doi:10.3762/bjnano.10.6

Graphical Abstract
  • crystallographic texture, scanning electron microscopy (SEM, JSM-5900 LV, JEOV) for micro-morphology, transmission electron microscopy (TEM, Tecnai G2 F20 S-TWIN) for microstructure, UV–vis diffuse reflectance spectroscopy (UV2100) for photoabsorption properties, X-ray photoelectron spectroscopy (XPS, Escalab
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2019

Contact splitting in dry adhesion and friction: reducing the influence of roughness

  • Jae-Kang Kim and
  • Michael Varenberg

Beilstein J. Nanotechnol. 2019, 10, 1–8, doi:10.3762/bjnano.10.1

Graphical Abstract
  • attachment of the wall-shaped microstructure degrades, regardless of the surface waviness, when the surface roughness increases. Second, splitting the wall-shaped microstructure indeed helps to mitigate the negative effect of the increasing surface unevenness by allowing the split microstructure to adapt
  • Spearman’s rank correlation coefficient (−0.97 vs −0.95) than the root-mean-square roughness Rq. This correlation supports our analysis of the relationships between adhesion, roughness and waviness, and proves that the adhesive performance of the wall-shaped microstructure depends on the microscale roughness
  • split microstructure exceeds that measured with the original microstructure by an amount that is greater than would be expected by chance. This key finding is demonstrated best in Figure 2c,d, where the roughness increase leads to a less pronounced reduction of the pull-off force if the microstructured
PDF
Album
Full Research Paper
Published 02 Jan 2019

A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta

  • Matthias Mail,
  • Adrian Klein,
  • Horst Bleckmann,
  • Anke Schmitz,
  • Torsten Scherer,
  • Peter T. Rühr,
  • Goran Lovric,
  • Robin Fröhlingsdorf,
  • Stanislav N. Gorb and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2018, 9, 3039–3047, doi:10.3762/bjnano.9.282

Graphical Abstract
  • –water interface allowing a three dimensional reconstruction of that interface (see [18]). The samples were placed in a custom pressure cell allowing defined pressure changes while imaging the air–water interface (Figure 6). Microstructure of the setal bases Different methods were used to analyze the
  • microstructure of the setal bases. The hemelytra were cut into several pieces. The pieces were fixed in 2.5% glutaraldehyde and 1.5% osmium tetroxide in cacodylate buffer (380 mOsmol, pH 7.1). After dehydrating in ethanol, the pieces were embedded in Epon 812 via epoxy propane as an intermedium. The clavus and
  • trapezium-shaped precut (16 nA/30 kV) was performed and 50 nm thick tomography slices (1 nA/30 kV) covering the area of interest were cut subsequently (see Supporting Information File 1). The resulting stack of images shows the microstructure of the setal bases. One advantage of the FIB slicing technique is
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • , or made “bridges” at the interface between two nanoparticles. Due to the “bridges” existing between TiO2 nanoparticles, the initial resistance of TiO2–rGO sensor was greatly reduced, indicating that the sensor was able to work at room temperature. The partly “wrapping” microstructure enhanced the
PDF
Album
Review
Published 09 Nov 2018

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • well defined. In terms of biomimetics, these structures resemble the tiles found on the skin of the Python regius snake, whose microstructure makes it very resistant to damage from wear by reducing friction (c.f. Figure 2E). Laser-based surface texturing has been used to mimic this structure in steel
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • chromium (Cr) adhesion layer is used as the back contact for a copper zinc tin sulfide (CZTS) thin-film solar cell on a SLG substrate. DC magnetron sputtering is used for deposition of Mo and Cr films. The conductivity of Mo/Cr bilayer films, their microstructure and surface morphology are studied at
  • in the range of 0.9 to 1.2 μm [14][15][16], which is 1.5-times the value of our samples. The decreasing of the film resistivity with increasing sputtering power could be attributed to the effect of power on the microstructure of the film. Higher power leads to bigger grain sizes, as higher kinetic
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • close to that of cell cytoplasm [6][67] thus mimicking the viscosity and microstructure of tissues [68][69]. We measure an increase of the r2-relaxivity from 159 to 495 mM−1·s−1 in water (Figure 5A) and from 118 to 612 mM−1·s−1 in agarose (Figure 5B) for the sample series of MNP-6, MNP-15 and MNP-25
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018
Other Beilstein-Institut Open Science Activities