Search results

Search for "transition metal" in Full Text gives 226 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials

  • Stefania Ordanini,
  • Wanda Celentano,
  • Anna Bernardi and
  • Francesco Cellesi

Beilstein J. Nanotechnol. 2019, 10, 2192–2206, doi:10.3762/bjnano.10.212

Graphical Abstract
  • nitroxide-mediated radical polymerization (NMP), are often used to produce well-defined glycopolymers with controlled molecular weight and narrow molecular weight distribution [9][10]. In particular, ATRP is a living radical polymerization catalyzed by a transition metal, normally copper or ruthenium, and
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • . Unfortunately, the application of conventional thermoelectric materials is still limited by inefficiency and problems with high-cost, stability and toxicity. As promising candidates to address these severe challenges, transition metal oxides (TMOs) provide a vast variety of low-cost and environmentally friendly
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • are widely used in commercial supercapacitors [6][7][8][9]. Although they have a higher capacity than the conventional capacitors, their average energy density is low to about 10 Wh·kg−1 whereas batteries reach 200 Wh·kg−1. Transition metal oxides such as RuO2, MnO2, NiO, and Fe2O3 [10][11][12][13][14
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering

  • Hamidreza Hajihoseini,
  • Movaffaq Kateb,
  • Snorri Þorgeir Ingvarsson and
  • Jon Tomas Gudmundsson

Beilstein J. Nanotechnol. 2019, 10, 1914–1921, doi:10.3762/bjnano.10.186

Graphical Abstract
  • sputtering; magnetic anisotropy; nickel; Introduction The realization of electronics based on utilizing the electron spin degree of freedom, commonly referred to as spintronics, requires the integration of ferromagnetic films with semiconductors [1]. Nickel is a ferromagnetic heavy 3d transition metal that
PDF
Album
Full Research Paper
Published 20 Sep 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • Ga3+ as well as the low melting point of Ga metal leading to coagulation. During the synthesis of NiGa [42] or PdGa [27] nanoparticles from Ni2+ or Pd2+ precursors, using aminoborane as reducing agent, the formation of a transition-metal hydride was reported as a first step. These hydrides can then
  • ionic liquids decomposition of GaCp* is possible at temperatures below 300 °C with the aid of transition metals. Reactions of transition-metal complexes are reported to show H/D activation/exchange reactions at the C2 imidazolium carbon atom of the ionic liquid cation. The generated N-heterocyclic
  • carbene ligands (NHC) stabilize metal clusters and nanoparticles [44]. By insertion of the transition-metal center into the C2–H bond of imidazolium salts, transition-metal hydride complexes are formed [45]. Finally, H transfer reactions from the transition metal to GaCp* lead to the release of Cp*H
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • phosphorus (BP) [2][3], hexagonal boron nitride (h-BN) [4][5] and transition metal dichalcogenides (TMDCs) with a common chemical formula MX2 [6][7][8][9][10]. Due to the many excellent electronic, mechanical and optoelectronic properties, TMDCs are highly attractive for fundamental studies of novel physical
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Giant magnetoresistance ratio in a current-perpendicular-to-plane spin valve based on an inverse Heusler alloy Ti2NiAl

  • Yu Feng,
  • Zhou Cui,
  • Bo Wu,
  • Jianwei Li,
  • Hongkuan Yuan and
  • Hong Chen

Beilstein J. Nanotechnol. 2019, 10, 1658–1665, doi:10.3762/bjnano.10.161

Graphical Abstract
  • the interatomic distances. Because the Al atom is a typical conduction sp-electron atom, it can continually exchange with local d-electrons of the nearest transition metal and serves as a bridge in hybridization between local d-electrons atoms. Hence, the atomic magnetic moment of the Al atom always
PDF
Album
Full Research Paper
Published 08 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • , Germany Peter Grünberg Institute (PGI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany August Chelkowski Institute of Physics, University of Silesia, 40–007 Katowice, Poland 10.3762/bjnano.10.155 Abstract Controlling the work function of transition metal oxides is of key importance with regard to
  • method employing KPFM and local conductivity AFM for the characterization of the work function of transition metal oxides may help in understanding the impact of reduction and oxidation on electronic properties, which is of high importance in the development of effective sensing and catalytic devices
  • . Keywords: Kelvin probe force microscopy (KPFM); reduction and oxidation; SrTiO3; TiO nanowires; TiO/SrTiO3 heterostructure; transition metal oxides; work function; Introduction Transition metal oxides are viewed today as some of the most promising materials in various fields, ranging from (photo)catalysis
PDF
Album
Full Research Paper
Published 02 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • -dimensional CuO petal assemblies (by Abe and co-workers [133]), perovskite nanosheets and their layer-by-layer assemblies as high-k dielectric/ferroelectric materials (by Osada and Sasaki [134]), the manipulation of transition-metal dichalcogenides nanosheets for the usage in energy storage/conversion
PDF
Album
Review
Published 30 Jul 2019

Synthesis of P- and N-doped carbon catalysts for the oxygen reduction reaction via controlled phosphoric acid treatment of folic acid

  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1497–1510, doi:10.3762/bjnano.10.148

Graphical Abstract
  • materials [11]) and further improved their ORR activity and durability to afford a commercial CAC [12][13] and thus realized the world’s first portable PEFC cell containing a non-precious-metal cathode catalyst [14][15]. Much effort has been directed at the development of transition-metal-free carbon
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • door for potential applications in gas recognition and detection. Keywords: Mn3O4/WO3 composites; heterojunctions; working temperature; gas sensing; selectivity; Introduction Tungsten oxide (WO3) is a highly stable, classical transition metal oxide. When synthesized, WO3 usually presents a yellowish
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • structure [14][15]: a Pt shell can be deposited on a low-cost transition metal such as Co [16][17][18], Ni [19][20] or Cu [21] or their nitrides [22]. Kristian et al. have described a redox–transmetalation method for the synthesis of Cocore–Ptshell particles with a high activity for the ORR [23]. Platinum
  • one. We suspect that the annealing of the N-CNTs and the as-obtained modifications of the chemical surface causes an important change in the adsorption and diffusion of the metal. It has been shown that the binding energy between a transition metal and a carbon support depends on the nature of the
  • -distributed NPs are the result of the good interaction between the transition metal and the nitrogen-doped CNT. It is known that high binding energies between the transition metal and the carbon support modify the electronic properties of the NPs and can facilitate the adsorption of the O2. However, XPS data
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Molecular attachment to a microscope tip: inelastic tunneling, Kondo screening, and thermopower

  • Rouzhaji Tuerhong,
  • Mauro Boero and
  • Jean-Pierre Bucher

Beilstein J. Nanotechnol. 2019, 10, 1243–1250, doi:10.3762/bjnano.10.124

Graphical Abstract
  • similar to the mechanical break junctions [9][10][11][12], but with a much better control of the location, number and nature of the molecules. Transition-metal phthalocyanines with a magnetic center represent a family of simple and robust molecules well suited to study tunable magnetic interactions on
  • vibration modes of transition-metal phthalocyanines [29][30], the two steps at |Vth| = 110 ± 5 mV are easily assigned to the excitation of the stretching of the Mn–Niso bonds of the MnPc molecule. The conductance step ΔG at the positive threshold voltage of 110 ± 5 mV, corresponds to an increase in the
PDF
Album
Full Research Paper
Published 19 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • considered the most extensively studied solid among the diverse transition-metal oxides and transition-metal chalcogenides investigated with that focus over the last decades. However, TiO2 has disadvantages such as limited activity together with a reduced sensitivity to sunlight. Hence, alternative
PDF
Album
Review
Published 31 May 2019

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • . In addition, FONPs also exhibit nonlinear photonic properties such as two-photon absorption, nonlinear scattering, and optical confinement [1][2]. Ferrous ferric oxide (Fe3O4) is a transition metal oxide that has a large third-order nonlinear optical susceptibility of χ(3) = 4.0 × 10−10 esu and an
  • InGaAs/GaAs-on-GaAs superlattice as a SA to realize 1557 nm, 1.2 ps, transformation-limited pulse generation [9]. Following this, carbon nanotubes (CNTs), graphene, topological insulators (TIs), transition metal disulfides (TMDs) and black phosphorus (BP) were used as SAs to realize passively mode-locked
PDF
Album
Full Research Paper
Published 20 May 2019

Electronic and magnetic properties of doped black phosphorene with concentration dependence

  • Ke Wang,
  • Hai Wang,
  • Min Zhang,
  • Yan Liu and
  • Wei Zhao

Beilstein J. Nanotechnol. 2019, 10, 993–1001, doi:10.3762/bjnano.10.100

Graphical Abstract
  • graphene has led to extensive research efforts on two-dimensional (2D) materials. Although graphene exhibits large carrier mobility and intriguing mechanical properties, its zero bandgap impedes its application in spintronic devices [1][2]. Subsequently, 2D transition-metal dichalcogenides (TMDs) have
  • to a concentration of 0.70%. They predicted that the C, Si, O, S and Se atoms could induce a magnetic state in phosphorene and these doped phosphorenes could be realized through experiments. Yu et al. [25] examined the doping of transition-metal atoms in phosphorene when the supercell and the
PDF
Album
Full Research Paper
Published 02 May 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • transition-metal dichalcogenides (TMDs) [9], phosphorene [10][11], and hexagonal boron nitride (h-BN) [8], among others [12][13], which are suitable for applications in electronic and photonic devices. However, in order to improve performance and possibly access new properties, the quest for new 2D compounds
  • synthesis and the photocatalytic properties of BiOX compounds under three different exposure conditions. Also, transition-metal oxychlorides MOCl (M = Sc, Ti, V, Cr, Fe) systems possess interesting electronic and magnetic properties [21][22][23][24]. Bismuth oxyhalides have been investigated as catalysts
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel 10.3762/bjnano.10.81 Abstract Nanostructures of transition-metal dichalcogenides (TMDC) have raised scientific interest in the last few decades. Tungsten disulfide (WS2) nanotubes and nanoparticles are among
  • two hexagonal sulfur layers. WS2 belongs to a family of compounds called transition-metal dichalcogenides (TMDCs), with a general formula of MX2 (M = W, Mo and X = S, Se, Te) and a similar structure based on triple-layers. Good mechanical properties of WS2 inorganic nanotubes (INTs; up to 15 µm length
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Towards rare-earth-free white light-emitting diode devices based on the combination of dicyanomethylene and pyranine as organic dyes supported on zinc single-layered hydroxide

  • Jeff L. Nyalosaso,
  • Rachod Boonsin,
  • Pierre Vialat,
  • Damien Boyer,
  • Geneviève Chadeyron,
  • Rachid Mahiou and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2019, 10, 760–770, doi:10.3762/bjnano.10.75

Graphical Abstract
  • layers, one can have structures of one, two or three dimensions [13]. Single-layered hydroxides (SLH), prepared by the polyol method [14][15], are part of the one-dimensional structures. Their general formula is M(OH)2−yXy·nH2O in which M represents a cation of a divalent transition metal such as Zn2
PDF
Album
Full Research Paper
Published 25 Mar 2019

The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface

  • Luiza Buimaga-Iarinca and
  • Cristian Morari

Beilstein J. Nanotechnol. 2019, 10, 706–717, doi:10.3762/bjnano.10.70

Graphical Abstract
  • Luiza Buimaga-Iarinca Cristian Morari National Institute for Research and Development of Isotopic and Molecular Technologies,67-103 Donat, 400293 Cluj-Napoca, Romania 10.3762/bjnano.10.70 Abstract The characteristics of interaction between six transition-metal porphyrines and the Ag(111) surface
  • atom on top the surface. We show that the interaction between the transition metal and silver is the result of a combination between the dispersion interaction, charge transfer and weak chemical interaction. The detailed analysis of the physical properties, such as dipolar and magnetic moments and the
  • applications can be found in the literature, ranging from molecular sensors [3] over memory devices [4] to light-harvesting structures [5][6][7]. Among all porphyrin compounds, transition-metal porphyrins (TMPPs) are of particularly interest. Because they accommodate a transition-metal atom in the center, the
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • District, 300072 Tianjin, China Nanchang Institute for Microtechnology of Tianjin University, Weijin Road 92, Nankai District, 300072 Tianjin, China 10.3762/bjnano.10.57 Abstract Real-time monitoring is essential for understanding and precisely controlling of growth of two-dimensional transition metal
  • spectroscopy; molybdenum disulfide (MoS2) monolayer; two-dimensional transition-metal dichalcogenides (2D TMDC); Introduction Two-dimensional transition metal dichalcogenide (2D TMDC) materials have drawn wide attention because of their fascinating physical and chemical properties [1][2][3][4][5][6]. Given
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • the Mo-doped BN monolayer in the early hydrogenation steps is found to be spontaneous, which is distinct from the conventional catalysts. Mo, as a non-noble element, presents excellent catalytic performance with coordination to the BN monolayer, and is thus a promising transition metal for catalyzing
  • efficiency than conventional nanoparticles [22][23][24][25]. To date, the catalysts that have employed various single transition metal (TM) atoms anchored on the different substrates such as graphene [26][27][28][29] and graphitic carbon nitride [30][31][32][33][34], have presented good performance and high
  • efficiency SACs for converting CO2 to useful hydrocarbon fuels. Results and Discussion Transition metal selection for CO2 reduction reaction For efficient CO2 reduction, the most critical requirement is that the CO2 molecule can selectively adsorb onto the catalyst and guarantee sufficient activation for CRR
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Choosing a substrate for the ion irradiation of two-dimensional materials

  • Egor A. Kolesov

Beilstein J. Nanotechnol. 2019, 10, 531–539, doi:10.3762/bjnano.10.54

Graphical Abstract
  • eV/ion (Xe in copper), which corresponds to an average sputtered atom energy of 22.1 and 320.1 eV/atom, respectively. The former value is already enough to introduce defects into common two-dimensional materials [18][19][20][21][22], most strongly manifesting for 2D transition metal dichalcogenides
PDF
Album
Full Research Paper
Published 22 Feb 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • well with the reported 2D transition metal dichalcogenides. A PtSe2 nanosheet-based sensor device was tested for its applicability as a humidity sensor and photodetector. The humidity sensor based on PtSe2 nanosheets showed an excellent recovery time of ≈5 s, indicating the great potential of PtSe2 for
  • , field emitters, battery materials, light harvesting and energy storage devices, catalyst for H2 generation, and drug delivery applications [7][8][9][10][11][12]. Most of the transition metal dichalcogenides (TMDCs) are semiconducting in nature with MX2 type – where M is a metal, M = W, Mo, Sn, Nb, V
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • synthesis remains a challenge. In this work, the controllability of the synthesis route is enhanced by immobilizing the transition-metal graphitization catalyst on a porous carbon shell covering the carbide precursor prior to conversion of the carbide core to carbon. The catalyst loading was varied and the
  • graphitization; graphitic carbon; pore structure; transition metal; Introduction Carbon is a versatile material that has been widely utilized in many applications such as adsorption [1][2][3], catalysis [4][5], catalyst support [6][7][8], molecular sieves [9][10] and energy storage [11][12][13], owing to its
  • graphitic content is present, but the overall material is rather inhomogeneous [18][23]. Most likely the physical powder mixture or the simple dip coating of the powder carbide precursor with the transition-metal catalyst lead to a very inhomogeneous starting mixture, which is responsible for the final
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019
Other Beilstein-Institut Open Science Activities