Search results

Search for "trapping" in Full Text gives 175 result(s) in Beilstein Journal of Nanotechnology.

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • simulation of solar cells, in particular heterojunction silicon (HJ Si) solar cells. The structure of HJ Si solar cells consists of thin and thick layers, and additionally, micro- and nano-textures are also introduced to further exploit the potential of light trapping. The RCWA was tested on the front
  • conversion efficiency of solar cells. Such techniques aim to improve the coupling of light into the structure (e.g., antireflective coatings and nanostructures at the front side of solar cells) and the light trapping ability of the structure (e.g., nano- and micrometer size textures for light scattering and
  • into solar cells [1][2][3][4][5]. The use of different techniques for the wet and dry etching of Si wafers [6] in combination with thermal or UV nanoimprint lithography [6][7] has opened new potential for design of (nano)textures with superior antireflection, light scattering and trapping properties
PDF
Album
Full Research Paper
Published 28 Aug 2018

Two-dimensional photonic crystals increasing vertical light emission from Si nanocrystal-rich thin layers

  • Lukáš Ondič,
  • Marian Varga,
  • Ivan Pelant,
  • Alexander Kromka,
  • Karel Hruška and
  • Robert G. Elliman

Beilstein J. Nanotechnol. 2018, 9, 2287–2296, doi:10.3762/bjnano.9.213

Graphical Abstract
  • inverted rough-surface LEDs [11] can be obtained. The main advantage therefore remains the ability to tune the far-field radiation pattern. It is worth noting that due to reciprocity of light propagation (in the linear regime), PhC structures can also be used for light-trapping. It was shown, both
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2018

Phosphorus monolayer doping (MLD) of silicon on insulator (SOI) substrates

  • Noel Kennedy,
  • Ray Duffy,
  • Luke Eaton,
  • Dan O’Connell,
  • Scott Monaghan,
  • Shane Garvey,
  • James Connolly,
  • Chris Hatem,
  • Justin D. Holmes and
  • Brenda Long

Beilstein J. Nanotechnol. 2018, 9, 2106–2113, doi:10.3762/bjnano.9.199

Graphical Abstract
  • excess of 1 × 1019 cm−3 with minimal impact on surface quality. Hall effect data proved that reducing SOI dimensions from 66 to 13 nm lead to an increase in carrier concentration values due to the reduced volume available to the dopant for diffusion. Dopant trapping was found at both Si–SiO2 interfaces
  • positive outcome. As a result of the increased carrier concentration the mobility drops, which is expected for silicon [15]. Dopant trapping MLD is a surface-diffusion technique in which the dopant source is applied to the substrate surface and requires further thermal treatment to promote diffusion into
  • × 1020 cm−3. However, due to the inaccuracy of SIMS in this region it is difficult to assess these values. One possible reason for these elevated values may be dopant trapping by SiO2 during the annealing process. The surface oxidation found after functionalization (Figure 6) has the potential to inhibit
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2018

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • nanoparticles act as electron-trapping centers on the surface of TiO2 [45][46]. After the formation of the very first platinum nanoparticles, photogenerated electrons from the silicon nanostructures are transferred to TiO2 and in sequence to the already formed platinum. The Schottky barrier between TiO2 and
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

Controllable one-pot synthesis of uniform colloidal TiO2 particles in a mixed solvent solution for photocatalysis

  • Jong Tae Moon,
  • Seung Ki Lee and
  • Ji Bong Joo

Beilstein J. Nanotechnol. 2018, 9, 1715–1727, doi:10.3762/bjnano.9.163

Graphical Abstract
  • light [34]. Another hypothesis regarding the exceptional activity of anatase and rutile P25 is that the presence of rutile crystallites generates a favorable structure in which rapid electron transfer from rutile to lower energy lattice trapping centers of anatase phase occurs under visible-light
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2018

Absence of free carriers in silicon nanocrystals grown from phosphorus- and boron-doped silicon-rich oxide and oxynitride

  • Daniel Hiller,
  • Julian López-Vidrier,
  • Keita Nomoto,
  • Michael Wahl,
  • Wolfgang Bock,
  • Tomáš Chlouba,
  • František Trojánek,
  • Sebastian Gutsch,
  • Margit Zacharias,
  • Dirk König,
  • Petr Malý and
  • Michael Kopnarski

Beilstein J. Nanotechnol. 2018, 9, 1501–1511, doi:10.3762/bjnano.9.141

Graphical Abstract
  • SRO:B accelerated TT-dynamics exist. When fitting the curves, best results are obtained for a two-exponential fit where the fast component τ1 ≈ 0.5 … 1.5 ps for all samples is attributed to ultrafast carrier trapping and thermalization events. The long component τ2 is associated with the actual Auger
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip–sample interaction forces even when
  • damping mechanism. The quality factor of the cantilever typically drops by a factor of 50 when immersed in water. By trapping air inside the hydrophobic encasement [26][27][28][29], the resonator maintains a high quality factor and resonance frequency. For the liquid air comparison a softer cantilever (L
PDF
Album
Full Research Paper
Published 08 May 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • . The active species trapping experiment reveals that active species (O2•− and h+) dominantly contribute to RhB degradation. The AgI/Ag2WO4 heterojunction photocatalyst characterized in this work holds great potential for remedying environmental issues due to its simple preparation method and excellent
  • ). These facts suggest that 0.3AgI/Ag2WO4 possesses long-term stability for photocatalytic reaction. Photocatalytic mechanism To elucidate the degradation mechanism, active-species trapping tests were performed during RhB degradation over 0.3AgI/Ag2WO4 (Figure 9) [13][48]. Figure 9 shows the effects of
  • various trapping agents on the RhB degradation efficiency under visible-light irradiation. When IPA was introduced, the RhB degradation efficiency slightly reduced from 91.3 % to 70.7%, suggesting that very little •OH was involved in the reaction. However, when benzoquinone (a superoxide radical (•O2
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • iron oxide nanoparticles (IPC-SPIOs). Nanophotonic force microscopy pushes particles against a waveguide surface, optically trapping the particles by light confinement [10][19][20]. The evanescent fields are created by the waveguide, and there are four forces operating on the field: the gradient force
  • (trapping force), scattering force, coating force, and drag force (Figure 1) [21]. Nanoparticles are either trapped in the evanescent field and reside in a potential well or escape the potential well via Brownian motion due to inadequate trapping force [22]. The potential well is the sum of all forces, and
  • it is generated by both the optical trapping force and surface repulsion of the nanoparticle [23]. The motion and behavior, i.e., velocity and local scattering intensity, of trapped nanoparticles is characteristic of the particle properties. When nanoparticles are trapped, the local refractive index
PDF
Album
Full Research Paper
Published 18 Apr 2018

Non-equilibrium electron transport induced by terahertz radiation in the topological and trivial phases of Hg1−xCdxTe

  • Alexandra V. Galeeva,
  • Alexey I. Artamkin,
  • Alexey S. Kazakov,
  • Sergey N. Danilov,
  • Sergey A. Dvoretskiy,
  • Nikolay N. Mikhailov,
  • Ludmila I. Ryabova and
  • Dmitry R. Khokhlov

Beilstein J. Nanotechnol. 2018, 9, 1035–1039, doi:10.3762/bjnano.9.96

Graphical Abstract
  • . An additional discrepancy may come out as a result of carrier trapping by acceptor resonant states [28][29]. Let us discuss now in more detail the experimental results obtained for the Hg1−xCdxTe topological phase (x < 0.16). The most unusual result is the absence of a threshold energy in the strong
PDF
Album
Letter
Published 29 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • faceted ZnO nano- and microstructures [3][43][44], or trapping of surface and/or defect states [5][42]. In our experiment, the plausible photocatalytic mechanism could be related to the high plasmonic effect of the Au NP/ZnO film in which high-energy photoinduced electrons (hot electrons due to SPR effect
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • overall photocatalytic activity. Furthermore, the active species trapping experiments validate the major role played by superoxide radicals (O2−•) in the degradation of pollutants. Based on scavenger studies and theoretically calculated band positions, a plausible mechanism for the photocatalytic
  • the photodegradation of the pollutant. The entire photocatalytic reaction mechanism under sunlight irradiation can be summarized as follows: To validate the proposed mechanism and to gain insight into the role played by active species, radical trapping experiments were performed for RhB degradation
  • observed in the presence of TEA pointing towards the active role of h+ species in the degradation of RhB. However, •OH radicals do not contribute much as the addition of IPA and had only a small effect on the degradation process of RhB. Thus, the trapping experiment results also confirm that O2−• and h
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • with the holes at the valance bands by trapping the electrons excited to the conduction bands. The LPSR, along with this distinctive characteristic feature, strengthens and contributes to the improvement of the plasmonic photocatalyst. All these distinctive characteristics of plasmonic photocatalysts
  • various ROSs, the rate constant of •OH is almost at the diffusion limit and hence the reactivity of •OH is considerably high. The detection methods utilized for •OH in photocatalysis are focussed on (1) laser-induced fluorescence (LIF), (2) spin-trapping ESR and (3) fluorescent probe methods. Laser
  • [115]. Spin-trapping electron spin resonance Spin-trapping ESR is a conventional method and most often utilized to detect the •OH generated in biological systems with the support of a spin-trapping reagent, namely 5,5-dimethyl-1-pyrroline N-oxide (DMPO) [129][130]. The unstable •OH radicals released
PDF
Album
Review
Published 19 Feb 2018

Fabrication and photoactivity of ionic liquid–TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase

  • Anna Gołąbiewska,
  • Marta Paszkiewicz-Gawron,
  • Aleksandra Sadzińska,
  • Wojciech Lisowski,
  • Ewelina Grabowska,
  • Adriana Zaleska-Medynska and
  • Justyna Łuczak

Beilstein J. Nanotechnol. 2018, 9, 580–590, doi:10.3762/bjnano.9.54

Graphical Abstract
  • titanium dioxide spheres results in a red-shift of absorption edge for the IL–TiO2 semiconductors. In this regard, the direct increase of the photoactivity of IL–TiO2 in comparison to pristine TiO2 was observed. The active species trapping experiments indicated that O2•− is the main active species, created
  • by adding BQ, which is capable of trapping O2• [57]. It was observed that the addition of BQ to both samples (TiO2_O(1:3) and TiO2_O(1:3)) caused inhibition of phenol degradation, as presented in Table 4. The degradation rate was largely suppressed to 22 and 11% for the TiO2_T(1:3) and TiO2_O(1:3
PDF
Album
Full Research Paper
Published 14 Feb 2018

Influence of the preparation method on the photocatalytic activity of Nd-modified TiO2

  • Patrycja Parnicka,
  • Paweł Mazierski,
  • Tomasz Grzyb,
  • Wojciech Lisowski,
  • Ewa Kowalska,
  • Bunsho Ohtani,
  • Adriana Zaleska-Medynska and
  • Joanna Nadolna

Beilstein J. Nanotechnol. 2018, 9, 447–459, doi:10.3762/bjnano.9.43

Graphical Abstract
  • increasing the content of surface oxygen vacancies and defects [31][40]. These electron trapping sites can enhance the separation of photogenerated electron–hole pairs [24]. Furthermore, both pristine and Nd-TiO2 NPs exhibit obvious excitonic PL signals with a similar curve shape. The observed phenomena can
PDF
Album
Full Research Paper
Published 06 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • detected by using trapping reagents such as dimethyl sulfoxide, isopropyl alcohol, ethylenediaminetetraacetic acid, p-benzoquinone for electrons, hydroxyl radicals (•OH), holes (h+), and superoxide (•O2−) radicals, respectively [35]. Figure 11b,c clearly shows that hydroxyl and superoxide radicals play a
PDF
Album
Full Research Paper
Published 05 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • coverage of CDs could suppress the recombination of photogenerated carriers in g-C3N4. As the CD coverage increased, trap states were created at the CD/g-C3N4 interface, thus increasing the trapping events and decelerating the electron transport [67][68][69]. A similar observation was reported previously
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

  • Stefan Fringes,
  • Felix Holzner and
  • Armin W. Knoll

Beilstein J. Nanotechnol. 2018, 9, 301–310, doi:10.3762/bjnano.9.30

Graphical Abstract
  • have been performed using static surfaces and fixed geometries, which do not allow the degree of confinement to be varied in situ. Recently it was demonstrated that the gap-distance-dependent electrostatic forces can be exploited to achieve geometry-induced trapping and manipulation of charged
  • nanoparticles and vesicles in nanofluidic systems [13]. In a follow-up experiment, it was shown that crucial information on the trapping potential can be gained by using an AFM-type system and a micro-capillary to adjust the gap distance [14]. Another example of a strongly gap-dependent behavior is the lateral
PDF
Album
Full Research Paper
Published 26 Jan 2018

Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

  • Ziyan Warneke,
  • Markus Rohdenburg,
  • Jonas Warneke,
  • Janina Kopyra and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2018, 9, 77–90, doi:10.3762/bjnano.9.10

Graphical Abstract
  • ion mass spectra suggest that fragmentation does not exclusively produce CH4 but also some CH3 [21]. ESD of CH3 from a condensed layer of MeCpPtMe3 during electron exposure would thus again be anticipated. Considering these electron-induced dissociation reactions of MeCpPtMe3, trapping of fragments in
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • utilized the diatom as the C3N4 formation templet, enlarging the specific surface area for enhanced light trapping and scattering and eventually high photocatalytic efficiency [27]. This research is mostly based on the slurry method. Optofluidics-based coenzyme regeneration appeared only in recent years
PDF
Album
Review
Published 04 Jan 2018

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • species that create charge-trapping centers in the sintered films [127][128]. Capping gold nanoparticles with chalcogenides such as Na4SnS4, (NH4)4SnS6, or Na3AsS3 was facilitated by the nucleophilic nature of these ligands and the electrophilicity of insufficiently coordinated metal atoms at the crystal
PDF
Album
Review
Published 07 Dec 2017

Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

  • Somi Kang,
  • Sean E. Lehman,
  • Matthew V. Schulmerich,
  • An-Phong Le,
  • Tae-woo Lee,
  • Stephen K. Gray,
  • Rohit Bhargava and
  • Ralph G. Nuzzo

Beilstein J. Nanotechnol. 2017, 8, 2492–2503, doi:10.3762/bjnano.8.249

Graphical Abstract
  • which they can be exploited. These applications include, but are not limited to: laser emission, light trapping, optical modulation, and label-free means of chemical or biological sensing [1][2][3][4][5][6]. Surface plasmons are collective oscillations of conduction electrons near metal surfaces that
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2017

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  • chosen to overcome trapping of NPs by electromagnetic fields and to extrude beams of NPs into the separate deposition chamber. Haberland [65] was one of the first to realize that NPs (metallic in his case) ionized in the magnetron plasma can be advantageous in terms of size separation in accord with
  • track on the PTFE target. An increase of the intensity of the magnetic field leads to a decrease of the magnetron self-bias from 620 V to 350 V due to more effective trapping of electrons within the magnetic channel. This in turn results in the formation of particles which are an order of magnitude
PDF
Album
Review
Published 25 Sep 2017

Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications

  • Chin-Yi Tsai,
  • Jyong-Di Lai,
  • Shih-Wei Feng,
  • Chien-Jung Huang,
  • Chien-Hsun Chen,
  • Fann-Wei Yang,
  • Hsiang-Chen Wang and
  • Li-Wei Tu

Beilstein J. Nanotechnol. 2017, 8, 1939–1945, doi:10.3762/bjnano.8.194

Graphical Abstract
  • deposition (LPCVD) can act as good TCOs for thin film silicon solar cells [1][2][3][4][5][6][7][8][9][10]. This is mainly due to its high transparency over the visible and near-infrared (NIR) wavelength range, lower electrical resistivity (down to 1 × 10−3 Ω·cm), and the light-trapping capability due to its
  • regarding the subject of granular ZnO thin films grown on crystalline silicon substrates. It is known that due to the formation of nanometer ZnO grains, granular ZnO could increase the light-scattering capability (i.e., the haze) of the film and thus function as a light-trapping structure by enhancing the
  • optical path and the photon absorption probability of the incident light, thus increasing the photocurrent of the solar cells [3]. As a result, for thin film solar cells, ZnO not only serve as a TCO, but also a light-trapping structure. In addition, the exposed planes in the crystal growth process depend
PDF
Album
Full Research Paper
Published 15 Sep 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • [17]. Measured variations of the charge-carrier mobility [18] were assigned either to mechanical changes in the semiconductor film or to charge trapping at the dielectric/semiconductor and semiconductor/electrode interfaces. It should be pointed out that the primary element affecting the transistor
  • . Secondly, it makes the semiconductor thin film remain in its initial position during the bending process, which prevents a charge trapping effect induced by the mechanical cracking [19]. For this reason, there is substantial interest in polymer materials that can be successfully applied in flexible organic
  • , namely charge trapping caused by mechanical bending [33]. In another work, ultra-thin Parylene C insulating layers were fabricated on Au gate electrodes by reducing the parylene film thickness to 18 nm with the help of oxygen plasma etching [33]. This procedure enabled the manufacturing of OFET devices
PDF
Album
Review
Published 28 Jul 2017
Other Beilstein-Institut Open Science Activities