Search results

Search for "electron transfer" in Full Text gives 228 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • degradation rate for these samples increased significantly, which can be explained by Pt acting as an efficient free electron trap, thereby reducing the undesirable electron–hole recombination while also improving the free-electron transfer to the adsorbed PB [25][50]. The best photocatalytic activity was
PDF
Album
Full Research Paper
Published 04 Jun 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • behind a small fraction of the excited carriers to be transferred to the surface of TiO2. This low electron transfer rate on the interface and fast recombination of photoinduced charge carriers causes its poor photocatalytic and photoelectrochemical efficiency [80][81][82][83]. (iii) The tendency of
  • shifted to longer wavelengths when TiO2 is combined with SnS2 [93]. Moreover, it is seen that modification with sulfates induces a redox couple which facilitates the electron transfer, and hence, better photocatalytic activity. Naik et al. have shown S and N modified titania where electron shuffle takes
  • as co-catalysts because of their intriguing properties such as small size, high dispersion, abundant surface functional groups, unique photoluminescence and good electron transfer ability [141][142]. Carbon dot–TiO2 (CD–TiO2) nanosheet composites synthesized by a hydrothermal route were studied for
PDF
Album
Review
Published 16 May 2018

Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane

  • Nor Fazila Khairudin,
  • Mohd Farid Fahmi Sukri,
  • Mehrnoush Khavarian and
  • Abdul Rahman Mohamed

Beilstein J. Nanotechnol. 2018, 9, 1162–1183, doi:10.3762/bjnano.9.108

Graphical Abstract
  • attracted to the base center (–Mg–OH group) and then dissociate on Ce2O3 via electron transfer to CO2 through oxygen vacancies to form CO2 and CeO2. Thus, the base center is most suitable for adsorbing the largest amount of CO2. The catalyst was stable for up to 50 h of reaction at 700 °C with an equal feed
PDF
Album
Review
Published 13 Apr 2018

Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells

  • Hana Krýsová,
  • Josef Krýsa and
  • Ladislav Kavan

Beilstein J. Nanotechnol. 2018, 9, 1135–1145, doi:10.3762/bjnano.9.105

Graphical Abstract
  • acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron
  • -transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO2 films. The blocking
PDF
Album
Supp Info
Full Research Paper
Published 10 Apr 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • by φ = EF – Evacuum, where EF is the Fermi energy and Evacuum is extracted from the electrostatic potential calculation in the vacuum region near the surface. In the case of electron transfer from graphene to RA molecules (p doping), the graphene Fermi energy moves below the Dirac point, leading to
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer

  • Abdulrahman Altin,
  • Maciej Krzywiecki,
  • Adnan Sarfraz,
  • Cigdem Toparli,
  • Claudius Laska,
  • Philipp Kerger,
  • Aleksandar Zeradjanin,
  • Karl J. J. Mayrhofer,
  • Michael Rohwerder and
  • Andreas Erbe

Beilstein J. Nanotechnol. 2018, 9, 936–944, doi:10.3762/bjnano.9.86

Graphical Abstract
  • interface, closely resembling the energy level alignment in an n–p junction. The energy level shift is too large to permit further electron transfer through the layer, inhibiting corrosion. Adsorption hence changes the defect density in the protecting ZnO layer. This mechanism of corrosion inhibition shows
  • because of β-CD adsorption is too high to enable easy electron transfer at active corrosion conditions. This work shows that the energy level alignment across the interface can be significantly affected by the presence of simple organic molecules. The defect chemistry of the oxide plays also an important
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • LSPR of gold with a probable electron transfer from gold NPs to the conduction band (CB) of titania and subsequent reduction of oxygen resulting in the formation of reactive oxygen species (ROS). It is also possible that bacteria could be easier adsorbed on positively charged (electron-deficient) gold
  • NPs, and then directly oxidized with simultaneous electron transfer to gold NPs keeping them in the initial zero valent state. A similar mechanism was proposed for decomposition of organic compounds under vis irradiation [53]. The increase in dark activity of titania samples after modification with
  • gold could be caused by an extracellular electron transfer between bacteria and gold, i.e., the surface of gold-modified titania could abstract respiration-active electrons from bacteria, inducing bacterial death [59]. In addition, silver and gold could affect proper transport through the plasma
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • . The inset of Figure 3c shows the band bending, the Fermi energy level of the ZnO and the electron transfer from Au to ZnO. The e–h recombination in Au NP/ZnO structures can be promoted and leads to an enhanced UV emission. The strong electronic interaction between Au NPs and the defect sites of ZnO
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • and hinders the charge recombination. This electron transfer is thermodynamically highly favored as charge flows from higher negative potential value to the lower negative potential values [34][60]. Thus, the formation of O2−• radicals is facilitated here as the reduction potential of O2/O2− (−0.33 eV
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • electron transfer until a Fermi equilibrium was achieved. The schematic of the mechanism of the bimetallic Au/AgBr-Ag heterostructure and the reactive oxygen species (ROS) formation reaction as reported by Purbia et al. is depicted in Figure 7 [103]. Another such similar finding was reported on the
  • theoretical simulation is necessary for detailed understanding of the circumstances. Advanced characterization and theoretical simulation The electron transfer mechanisms of plasmonic/semiconductor hybrid systems have been reported elsewhere. However, the principal mechanism that governs the plasmon
  • realistic application of plasmonic photocatalysts will focus on the scalability, cost and sustainability from the perspective of synthesis route to application. In addition, the theory behind the plasmonic-induced electron transfer mechanism still remains questionable and thus necessitates the advanced
PDF
Album
Review
Published 19 Feb 2018

Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

  • Nagamalai Vasimalai,
  • Vânia Vilas-Boas,
  • Juan Gallo,
  • María de Fátima Cerqueira,
  • Mario Menéndez-Miranda,
  • José Manuel Costa-Fernández,
  • Lorena Diéguez,
  • Begoña Espiña and
  • María Teresa Fernández-Argüelles

Beilstein J. Nanotechnol. 2018, 9, 530–544, doi:10.3762/bjnano.9.51

Graphical Abstract
  • depending on the surface structure, interactions with the environment can be very selective and reversible. Changes of the optical properties have been attributed to electron transfer from the C-dots to other species, and it has been suggested that the solvent plays an important role due to solvation
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • degradation of indomethacin from the UV to NIR spectrum because of the superior electron transfer and extension of visible light absorption region after doping with N atoms [39]. Their group further enhanced the efficiency of CD/g-C3N4 through the incorporation of single-atom-dispersed silver. The optimum
  • h+ in the VB directly oxidized BPA but cannot react with water (H2O) and hydroxide (OH−) to generate •OH because the VB of g-C3N4 (+1.52 eV vs NHE) was more negative than the redox potential of OH−/•OH (+2.4 eV) [76]. With a lower amount of CDs, the CDs facilitated efficient electron transfer from
  • light absorption band while the lattice distortion of g-C3N4 was observed in XRD analysis. The minimal coverage of CDs (<0.5 wt %) mediated the electron transfer from the CB of g-C3N4 to adsorbed O2 to produce O2•−. It is evidenced by the scavenger test that both O2•− and h+ were the major active
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications

  • Ruiyuan Zhuang,
  • Shanshan Yao,
  • Maoxiang Jing,
  • Xiangqian Shen,
  • Jun Xiang,
  • Tianbao Li,
  • Kesong Xiao and
  • Shibiao Qin

Beilstein J. Nanotechnol. 2018, 9, 262–270, doi:10.3762/bjnano.9.28

Graphical Abstract
  • sulfur and MoO2–CNF materials. This suggested sufficient contact among sulfur and MoO2–CNFs, which lowered the resistance for the electron transfer across the interface between both. For further confirmation, the lithium ion diffusion coefficient was calculated using Equation 2 [40][41]: where DLi
PDF
Album
Supp Info
Full Research Paper
Published 24 Jan 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • photogenerated electrons from PS II directly recombine with the photogenerated holes from PS I, reducing the electron transfer distance and avoiding the backward reaction in the PS-A/D-PS system. Another simpler design using the solid–solid contact (PS-PS system) is illustrated in Figure 3D. On the contact
  • nano-system in which water and CO2 were catalyzed to form H2 and CO in this integrated system [66]. Jiang et al. showed a thylakoid-inspired multishell g-C3N4 nanocapsule with orderly stacked nanostructures, which exhibited enhanced visible-light harvesting and electron-transfer properties for high
PDF
Album
Review
Published 04 Jan 2018

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO2. Due to its high stability (up to ten reuses without any significant loss in activity), the CdSe/TiO2 heterostructured
  • separation. The interfacial electron transfer between two semiconductors has gained significant interest because the heterojunction improves both the optical absorption in the visible range and the charge separation yield and thus the charge carrier lifetime [3][4][5][6][7][8]. The photocatalytic activity is
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • circle radius, Rct, characterizes the charge-transfer resistance, which is inversely proportional to the rate of electron transfer. The initial point of the circle at high frequency, Rf, corresponds to the solid–solution resistance. The vertical line is the Warburg impedance, which arises from
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

  • Bartosz Bartosewicz,
  • Marta Michalska-Domańska,
  • Malwina Liszewska,
  • Dariusz Zasada and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2017, 8, 2083–2093, doi:10.3762/bjnano.8.208

Graphical Abstract
  • electromagnetic fields increased the efficiency of light interaction with sensitizers (dyes). On the other hand, plasmon resonance energy transfer (PRET) and “hot” electron transfer led to an increased e−/h+ pair generation and amplified number of carriers available for photocurrent generation. An increased
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2017

Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics

  • Stefania Lettieri,
  • Marta d’Amora,
  • Adalberto Camisasca,
  • Alberto Diaspro and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2017, 8, 1878–1888, doi:10.3762/bjnano.8.188

Graphical Abstract
  • boron dipyrromethene (BODIPY) dye with on/off modulated fluorescence emission activated by an acidic environment. The switching properties are linked to the photoinduced electron transfer (PET) characteristics of the dimethylamino functionalities attached to the BODIPY core. The on/off emission of the
  • , Scheme 1), which are capable of introducing photoinduced electron transfer (PET) [27] properties to the fluorophore, the dye molecule exhibited a bright red fluorescence with maximum emission centered at 637 nm in chloroform (Figure 1). These PET groups were activated in neutral or basic environment
  • biocompatibility [20]. We have previously shown that the pH-dependent switching ability of a dye is preserved when attached to CNOs [21] and on single-wall carbon nanotubes, [22] both in solution and in vitro. Thus, CNOs are suitable nanomaterials for biosensing applications. We exploited the photoinduced electron
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2017

Application of visible-light photosensitization to form alkyl-radical-derived thin films on gold

  • Rashanique D. Quarels,
  • Xianglin Zhai,
  • Neepa Kuruppu,
  • Jenny K. Hedlund,
  • Ashley A. Ellsworth,
  • Amy V. Walker,
  • Jayne C. Garno and
  • Justin R. Ragains

Beilstein J. Nanotechnol. 2017, 8, 1863–1877, doi:10.3762/bjnano.8.187

Graphical Abstract
  • ) and benzyl nicotinamide radical cation (BNAH∙+, 4, Equation 1). Irreversible single-electron transfer from [Ru(bpy)3]+ (5, E1/2(M/M-) = −1.33 V, SCE) [41] to 6 (E1/2 ≈ −1.3 V, SCE) [37] leads to a short-lived radical anion [37] that fragments to CO2, phthalimide anion 7, and alkyl radical (R∙) and
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2017

Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

  • Jayita Patwari,
  • Samim Sardar,
  • Bo Liu,
  • Peter Lemmens and
  • Samir Kumar Pal

Beilstein J. Nanotechnol. 2017, 8, 1705–1713, doi:10.3762/bjnano.8.171

Graphical Abstract
  • , using time-resolved fluorescence decay measurements. The electron transfer time scales from the dyes to TiO2 have also been characterized for each dye. The current–voltage (I–V) characteristics and the wavelength-dependent photocurrent measurements of the co-sensitized DSSCs reveal that FRET between the
  • of PPIX, both electron transfer to TiO2 and energy transfer to SQ2 become feasible. Although these two processes will be competing with each other, the FRET from PPIX to SQ2 was observed to be efficient in terms of device performance and cost effectiveness, as discussed in the explanation of the
  • component of 130 ps (63%) was obtained, which is ascribed to be the electron transfer time scale from the excited state of PPIX to the conduction band of TiO2. Figure 4b shows that the decay of the excited state of SQ2 in ethanol was also single-exponential (500 ps) and a very fast electron transfer
PDF
Album
Full Research Paper
Published 17 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • other devices [1][2][3][4][5][6][7]. Efficient utilization of VGNs depends on their effective surface area, which is determined by two major factors: (a) vertical sheet density and (b) intersheet spacing. Enhancing these two factors improves the electron transfer kinetics and hence electrochemical
PDF
Album
Full Research Paper
Published 10 Aug 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • electron-transfer process. The charge-transfer resistance (Rct) can be calculated from measuring the diameter of the semicircle. According to the Bode phase plot in Figure 6b, the phase angle of the sample was 10° around 80 Hz. In the Bode magnitude plot, the absolute values of impedance are plotted as a
PDF
Album
Full Research Paper
Published 07 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • with a large number of active sites on the surface to boost photocatalytic reactions as compared to their bulk counterpart; π-conjugated structures, which lead to fast electron transfer and promote the separation of electron−hole pairs on the photocatalyst surface; and excellent support matrix for
  • thin layer to form a 2D hexagonal honeycomb-like structure [42]. The π-conjugated structure in graphene provides ultrafast electron transfer (200,000 cm2·V−1·s−1), very high specific surface area (2600 m2·g−1), and high thermal conductivity (5000 W·w−1·K−1) [43]. In addition to this, graphene possesses
  • cocatalysts, such as Pt, Rh, NiO, and RuO2. These cocatalysts are mainly helpful to introduce the active sites on the photocatalyst surface, to facilitate the electron transfer from the CB of excited semiconductor, and hence, to enhance the process of H2 generation [11]. However, the sacrificial agents
PDF
Album
Review
Published 03 Aug 2017

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • electron transfer and redox properties. There are two main methods to synthesize CNDs: top-down (e.g., laser ablation, electrochemical synthesis) and bottom-up (e.g., combustion, microwave irradiation) [1][2]. In particular, the use of microwave (MW) irradiation is an interesting synthetic approach, which
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

Spin-chemistry concepts for spintronics scientists

  • Konstantin L. Ivanov,
  • Alexander Wagenpfahl,
  • Carsten Deibel and
  • Jörg Matysik

Beilstein J. Nanotechnol. 2017, 8, 1427–1445, doi:10.3762/bjnano.8.143

Graphical Abstract
  • ., in photosynthetic reaction centers [12][13][14] and in organic solids [15][16]), spin chemistry mostly deals with small organic molecules in the solution state. The radical-pair formation is now-a-days often initiated photochemically either by electron transfer or by bond breaking, although thermal
  • on two different molecules is called a radical pair (R• + R•). This pair is often formed by the same chemical process, for example a bond break or a photochemically induced electron transfer: in this situation it is formed in a particular spin state, either the singlet or the triplet state. Such a
  • electric polarization in chemical processes; a prominent example of theoretical understanding of electric polarization effects is given in the famous Marcus theory [21] of electron transfer. Spin–orbit coupling is not a very prominent issue in spin chemistry of radical pairs because of the absence of heavy
PDF
Album
Review
Published 11 Jul 2017
Other Beilstein-Institut Open Science Activities