Search results

Search for "plasmon" in Full Text gives 295 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material

  • Lars Kool,
  • Anton Bunschoten,
  • Aldrik H. Velders and
  • Vittorio Saggiomo

Beilstein J. Nanotechnol. 2019, 10, 442–447, doi:10.3762/bjnano.10.43

Graphical Abstract
  • , where craftsmen, unaware of the existence of surface plasmon resonance [3], used metallic nanoparticles for coloring mosaic tiles, pottery and glass [4][5]. Metallic nanoparticles were also used for staining glass during medieval times, examples of which can still be found in many churches and
  • S1). In addition to the surface plasmon resonance color [15], the large size of the nanoparticles increases the Mie scattering [16], giving rise to the opaque reflection. However, the elongated shape of the nanoparticles may also contribute to the dichroism, as nanoparticles with an aspect ratio
  • transparent color to the PVA, here named “ruby plastic” as reference to the first reproducible nanoparticle embedded glass “ruby glass” (Supporting Information File 1, Figure S8). The surface plasmon resonance band of the gold nanoparticles in the PVA film shows a redshift of 20 nm with respect to the
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2019

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

  • Venkataramana Bonu,
  • Binaya Kumar Sahu,
  • Arindam Das,
  • Sankarakumar Amirthapandian,
  • Sandip Dhara and
  • Harish C. Barshilia

Beilstein J. Nanotechnol. 2019, 10, 379–388, doi:10.3762/bjnano.10.37

Graphical Abstract
  • tapered Ag NW waveguides showed that plasmon polaritons are slowed near the tip and subsequent accumulation of energy and giant local fields appear at the tip [9][10]. A NW waveguide was reported for use as a single photon emitter [4][6][7][11]. In particular, InAsP quantum dots embedded on the axis of an
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Electromagnetic analysis of the lasing thresholds of hybrid plasmon modes of a silver tube nanolaser with active core and active shell

  • Denys M. Natarov,
  • Trevor M. Benson and
  • Alexander I. Nosich

Beilstein J. Nanotechnol. 2019, 10, 294–304, doi:10.3762/bjnano.10.28

Graphical Abstract
  • 2RD, UK 10.3762/bjnano.10.28 Abstract Results from the electromagnetic modeling of the threshold conditions of hybrid plasmon modes of a laser based on a silver nanotube with an active core and covered with an active shell are presented. We study the modes of such a nanolaser that have their emission
  • surface plasmon (HLSP) modes of the metal tube, the core modes, and the shell modes. The latter two types can be kept off the visible range in thin enough configurations. Keeping this in mind, we focus on the HLSP modes and study how their threshold gain values change with variations in the geometrical
  • 3 can be several times lower, with emission in the violet or blue parts of the spectrum. Keywords: hybrid localized plasmon mode; nanolaser; nanotube; threshold; Introduction The promise of greatly enhanced light–matter interaction in nanostructured metal configurations, combined with controlled
PDF
Album
Full Research Paper
Published 28 Jan 2019

Magnetic-field sensor with self-reference characteristic based on a magnetic fluid and independent plasmonic dual resonances

  • Kun Ren,
  • Xiaobin Ren,
  • Yumeng He and
  • Qun Han

Beilstein J. Nanotechnol. 2019, 10, 247–255, doi:10.3762/bjnano.10.23

Graphical Abstract
  • compactness of the MDM waveguide structure. This research may open new opportunities to design nanoscale magnetic sensors with good performance. Keywords: dual resonance; magnetic fluid; magnetic sensor; plasmonic waveguide; self-reference; surface plasmon polaritons; Introduction Sensors that can detect
  • fabrication and compactness. In recent years, compact optical devices based on surface plasmon polaritons (SPPs) have been reported. SPPs propagate along the dielectric–metal interface with the amplitudes decaying exponentially into both sides [16]. The deep subwavelength confinement of SPPs leads to the
PDF
Album
Full Research Paper
Published 22 Jan 2019

Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Marek Trzcinski,
  • Ewa Górecka,
  • Wojciech Pacuski and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2019, 10, 238–246, doi:10.3762/bjnano.10.22

Graphical Abstract
  • semiconductor atoms essentially act as nanoparticles which absorb light due to localized plasmon excitation [25][26]. If that is the case, such additional bands should be observable in the permittivity of any plasmonic metal thin layer film in which a semiconductor segregates. Of the semiconductors, only Ge and
  • their energy, which is what we observe. It is also worth noting that the band at 325–400 nm clearly consists of two components, which confirms that this band has two origins: interband transitions at the L-point and surface plasmon excitations [26]. For the measurements performed four weeks after
PDF
Album
Full Research Paper
Published 21 Jan 2019

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • stability and biocompatibility of GNRs has been reported by several researchers, and they are being investigated as a probe for photothermal therapy in nanomedicine. The presence of longitudinal surface plasmon resonance (LSPR) provides GNRs with richer optical properties, which lead to local field, Raman
  • used the GNRs to enhance the PL intensity of the CdSe/ZnS QDs. The PL from GNR@CdSe/ZnS nanoparticles is approximately four times more than that from CdSe/ZnS QDs. Finite difference time domain (FDTD) simulations were also conducted to understand the plasmon coupling effect on PL enhancement
  • /ZnS were acquired at room temperature as they were prepared, and the spectrum of water was measured as a reference. Figure 4a shows the absorption spectrum of CdSe/ZnS GNRs and GNR@CdSe/ZnS, where it can be seen that there are two peaks in the GNR absorption spectrum: the transverse surface plasmon
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Hybrid Au@alendronate nanoparticles as dual chemo-photothermal agent for combined cancer treatment

  • Anouchka Plan Sangnier,
  • Romain Aufaure,
  • Laurence Motte,
  • Claire Wilhelm,
  • Erwann Guenin and
  • Yoann Lalatonne

Beilstein J. Nanotechnol. 2018, 9, 2947–2952, doi:10.3762/bjnano.9.273

Graphical Abstract
  • Supporting Information File 1). The excess of reactive species is eliminated by ultrafiltration. We thus obtained spherical NPs (Figure 1a, left) with an average diameter of 30.5 ± 3.0 nm (Figure 1a, right) and a plasmon band at 528 nm (Figure 1b). Under similar synthesis conditions, gold NPs obtained with
PDF
Album
Supp Info
Letter
Published 27 Nov 2018

Site-controlled formation of single Si nanocrystals in a buried SiO2 matrix using ion beam mixing

  • Xiaomo Xu,
  • Thomas Prüfer,
  • Daniel Wolf,
  • Hans-Jürgen Engelmann,
  • Lothar Bischoff,
  • René Hübner,
  • Karl-Heinz Heinig,
  • Wolfhard Möller,
  • Stefan Facsko,
  • Johannes von Borany and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2018, 9, 2883–2892, doi:10.3762/bjnano.9.267

Graphical Abstract
  • electron microscopy (TEM) lamella preparation. In all cases, the local distribution and size of the NCs are mapped using energy-filtered transmission electron microscopy (EFTEM). Results and Discussion In Figure 1, a comparison of cross-sectional Si plasmon-loss-filtered TEM images obtained from two Si
  • combination with the nominal width of the line, this results in an effective irradiated line width of approximately 3–9 nm. In Figure 6a a cross-sectional Si plasmon-loss filtered TEM image after 1D line irradiation and subsequent RTA is shown. The fluence in the line-pattern is 3000 Ne+/nm2 with a nominal
  • surface of the top Si layer (red). In order to quantify the number of observed Si NCs, a line profile of the Si plasmon-loss intensity is obtained across the layer. This line section is converted into a projected thickness of Si and presented in Figure 6c. Using the intensity of the initial electron beam
PDF
Album
Full Research Paper
Published 16 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • the last decades [1]. This phenomenon, called surface-enhanced Raman scattering [2][3], depends on the fact that incident light leads to the excitation of surface plasmon resonances, which in turn lead to a concentration of the incident electromagnetic field thus enhancing the Raman scattering effect
  • . This effect is even further enhanced by the presence of so called hot spots, which are sub-10 nm gaps where the electromagnetic field is further magnified due to constructive interference of the plasmon resonances [4]. Electromagnetic enhancement is the main reason for the observed Raman enhancement
  • prominent for 10 min nitrogen plasma treatment at about 500 nm. This indicates a restructuring of the film surface leading to the formation of particulate structures on the surface as has been proven by SEM. This restructuring might result in the emergence of localized surface plasmon resonances as they are
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • pulse [15]. The other mechanism involves the formation of a surface plasmon polariton coupled to the sample–air interface, which interferes with the incoming pulse [16]. For both mechanisms, interference leads to a spatial modulation of the intensity distribution that is finally imprinted in the
  • many cases, ordered structures (namely ripples, grooves or spikes). The presence of these structures greatly influences the spatial distribution of the scattered light [26][28] and the coupling efficiency and propagation of surface plasmon polaritons. As a consequence, the spatial intensity
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • , and nanomedicine [1][2][3]. Noble metal nanoparticles are of particular importance due to their diverse properties such as surface plasmon resonance, chemical inertness, and antibacterial action (silver) [4][5][6][7][8][9]. However, concerns have been raised with respect to their biological effect
  • properties of nanoparticles, e.g., surface plasmon resonance (SPR) effects (Figure 5). While the dispersions of platinum group nanoparticles (Rh, Pd, Pt) were all brown-black and had no distinct absorption in the visible range, silver and gold showed the typical surface plasmon resonance (SPR) absorption
PDF
Album
Full Research Paper
Published 29 Oct 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • between the dark-field scattering peak, attributed to plasmon excitations, and the position of the maximum integrated SERS background of the tip, confirming that the background is enhanced by the localized plasmon resonance in the apical region. On sharp Au tips, the same authors report an almost flat
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Silencing the second harmonic generation from plasmonic nanodimers: A comprehensive discussion

  • Jérémy Butet,
  • Gabriel D. Bernasconi and
  • Olivier J. F. Martin

Beilstein J. Nanotechnol. 2018, 9, 2674–2683, doi:10.3762/bjnano.9.250

Graphical Abstract
  • concentrate light into subwavelength regions [1][2]. The collective oscillations of these electrons in a given plasmonic nanostructure are called localized surface plasmon resonances (LSPRs) [3][4][5]. The high electric field enhancement associated with the optical excitation of such a resonance has been
  • surfaces result in higher charge interaction in the nanogap, and then in a larger LSPR shift. For the same gap variation, i.e., from 5 nm to 60 nm, the shift of the LSPR for the rectangular arms is twice that observed for cylindrical nanorods. Apart from the plasmon shift amplitudes, the near-field
PDF
Album
Full Research Paper
Published 15 Oct 2018

Polarization-dependent strong coupling between silver nanorods and photochromic molecules

  • Gwénaëlle Lamri,
  • Alessandro Veltri,
  • Jean Aubard,
  • Pierre-Michel Adam,
  • Nordin Felidj and
  • Anne-Laure Baudrion

Beilstein J. Nanotechnol. 2018, 9, 2657–2664, doi:10.3762/bjnano.9.247

Graphical Abstract
  • Abstract Active plasmonics is a key focus for the development of advanced plasmonic applications. By selectively exciting the localized surface plasmon resonance sustained by the short or the long axis of silver nanorods, we demonstrate a polarization-dependent strong coupling between the plasmonic
  • resonance and the excited state of photochromic molecules. By varying the width and the length of the nanorods independently, a clear Rabi splitting appears in the dispersion curves of both resonators. Keywords: active plasmonics; photochromic molecules; plasmon; Rabi splitting; strong coupling
  • ; Introduction For decades, plasmonic systems have been extensively studied for their potential applications in many research fields. Due to their localized surface plasmon resonance (LSPR), metallic nanoparticles have been used to enhance the sensitivity of bio- or chemo-sensors [1], enhance and direct the
PDF
Album
Full Research Paper
Published 08 Oct 2018

Nanoantenna structures for the detection of phonons in nanocrystals

  • Alexander G. Milekhin,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Alexander V. Latyshev,
  • Volodymyr M. Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2018, 9, 2646–2656, doi:10.3762/bjnano.9.246

Graphical Abstract
  • Semiconductor Physics, Technische Universitaet Chemnitz, 09126, Chemnitz, Germany 10.3762/bjnano.9.246 Abstract We report a study of the infrared response by localized surface plasmon resonance (LSPR) modes in gold micro- and nanoantenna arrays with various morphologies and surface-enhanced infrared absorption
  • transverse optical phonons are activated in the infrared spectra. Keywords: localized surface plasmon resonance; metal nanoclusters; nanoantenna; phonons; semiconductor nanocrystals; surface-enhanced infrared absorption; Introduction Surface-enhanced infrared absorption (SEIRA) by organic species placed on
  • (Ag, Au, Cu, etc.) [5][6][7]. The origin of the IR signal enhancement is the localized electromagnetic field of plasmons excited near metallic surfaces. In the case of flat metal films, the IR response from an organic molecule in the plasmon field can be increased by a factor of 103 [8]. For island
PDF
Album
Full Research Paper
Published 05 Oct 2018

Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation

  • Wei-Hung Hsu,
  • Frances Camille P. Masim,
  • Armandas Balčytis,
  • Hsin-Hui Huang,
  • Tetsu Yonezawa,
  • Aleksandr A. Kuchmizhak,
  • Saulius Juodkazis and
  • Koji Hatanaka

Beilstein J. Nanotechnol. 2018, 9, 2609–2617, doi:10.3762/bjnano.9.242

Graphical Abstract
  • selectivity based on surface plasmon resonance [15]. An increase of the laser-absorption efficiency can be expected in plasmonic nanoparticles, which results in the efficient generation of highly ionized charge states [13][14]. It is expected that this characteristic interaction between intense femtosecond
  • . The plasmon resonance excitation for these NPs is expected to be near 520 nm. This provides a moderate enhancement of the optical near-fields as shown further by numerical simulations. The incident fluence of the main pulse used in the present study significantly exceeds both the ablation threshold
  • that the appropriate size for the highest X-ray intensity is 40–50 nm. For ultrasound generation under fs-laser excitation [34][49], gold nanorod particles with more efficient surface plasmon resonance effects [50] were also used. Further enhancements of X-ray intensities are expected under double
PDF
Album
Full Research Paper
Published 01 Oct 2018

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • efficient diffusion barrier against metal atoms [24], so Au–Si monoatomic layer could be present on the surface of the support. Exemplary absorbance spectra recorded for the 2.8 nm Au film after annealing at 550 °C for 15 min is presented in Figure 10. A strong maximum corresponding to plasmon resonance is
  • , because of the intensity profile of the incident light. As a consequence, the surface plasmon resonance was also stronger in that region. In Figure 14, the amplitudes of particular components of the electromagnetic field are presented as a result of FDTD simulations. Here the amplitudes of the field
PDF
Album
Full Research Paper
Published 28 Sep 2018

SERS active Ag–SiO2 nanoparticles obtained by laser ablation of silver in colloidal silica

  • Cristina Gellini,
  • Francesco Muniz-Miranda,
  • Alfonso Pedone and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2018, 9, 2396–2404, doi:10.3762/bjnano.9.224

Graphical Abstract
  • unchanged at the same wavelength and with the same bandwidth. Ten minutes of laser ablation are sufficient to obtain a plasmon absorbance more than 2.5 in a 10 mm cuvette. However, a much larger silver content could be obtained with longer ablation times without compromising the colloidal stability. We have
  • at 514.5 nm with the secondary plasmon band with maximum around 530 nm. The SERS spectrum of bpy in Ag–SiO2 colloid was found to be comparable with that obtained in pure silver colloid, in terms of frequency and intensity. This demonstrates that the interaction between silver and silica does not
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

Directional light beams by design from electrically driven elliptical slit antennas

  • Shuiyan Cao,
  • Eric Le Moal,
  • Quanbo Jiang,
  • Aurélien Drezet,
  • Serge Huant,
  • Jean-Paul Hugonin,
  • Gérald Dujardin and
  • Elizabeth Boer-Duchemin

Beilstein J. Nanotechnol. 2018, 9, 2361–2371, doi:10.3762/bjnano.9.221

Graphical Abstract
  • emission direction of the beam is determined by the microstructure eccentricity. A very simple, broadband, optical antenna design is used, which consists of a single elliptical slit etched into a gold film. The light beam source is driven by an electrical nanosource of surface plasmon polaritons (SPP) that
  • ; surface plasmon polariton; Introduction With the ever-growing demand for higher information capacity and the diversification of applications, the integration of nanophotonics with nanoelectronics in microdevices has never been more relevant than now [1][2][3][4][5][6][7][8][9]. In this context
  • , bull’s-eye, nanoparticle dimer, or wire antennas), coupled in the near field (or incorporating in their design) an electrically driven nanosource of surface plasmon polaritons (SPPs, light waves coupled to electron density oscillations at a metal–dielectric interface). In particular, the electrical SPP
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • excited to generate electrons, reacting with O2 to form •O2− radicals due to the plasmon resonance (SPR) effect [32]. Based on above analysis, the rational design and construction of Bi2MoO6-based heterostructures is favorable for the separation of charges, leading to a superior activity in pollutant
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement

  • Nicolae Leopold,
  • Andrei Stefancu,
  • Krisztian Herman,
  • István Sz. Tódor,
  • Stefania D. Iancu,
  • Vlad Moisoiu and
  • Loredana F. Leopold

Beilstein J. Nanotechnol. 2018, 9, 2236–2247, doi:10.3762/bjnano.9.208

Graphical Abstract
  • nanoparticles (also called surface plasmon resonances) [8]. Although this model does not require a chemical contact, the magnitude of the electromagnetic field outside the particle decreases with the third power of radial distance [9]. This means that the field enhancement of Raman scattering decreases strongly
  • , indicating a high polydispersity of the formed silver nanostructures. Simultaneously, a decrease in the intensity of the AgCl absorption band at 254 nm is observed, whereby the intensity of the AgCl band is then comparable to that of the plasmonic band. However, after 5 min of light exposure, the plasmon
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • .9.205 Abstract Plasmonic nanoantennas have found broad applications in the fields of photovoltaics, electroluminescence, non-linear optics and for plasmon enhanced spectroscopy and microscopy. Of particular interest are fundamental limitations beyond the dipolar approximation limit. We introduce
  • plasmon resonances and the electromagnetic field distribution in these structures, is much more versatile for asymmetric (dumbbell) antennas [33][34][35][36][37]. Introducing a defined asymmetry for these gap structures, e.g., converts dark anti-symmetric modes into bright modes [38] and also influences
  • and the end point [40]. Decreasing the interparticle gap size, therefore, leads to stronger electromagnetic fields at the gap and the end point locations. However, one has to keep in mind, that the reduction of the gap size also is accompanied by a shift of the plasmon resonance and the strongest
PDF
Album
Full Research Paper
Published 17 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

  • Kahraman Keskinbora,
  • Umut Tunca Sanli,
  • Margarita Baluktsian,
  • Corinne Grévent,
  • Markus Weigand and
  • Gisela Schütz

Beilstein J. Nanotechnol. 2018, 9, 2049–2056, doi:10.3762/bjnano.9.194

Graphical Abstract
  • . This can be attributed to the shifting plasmon resonances of the gold nanowires that make up the zones of the FZPs. A scanning transmission electron microscope (STEM) dark-field overview image of the completed array is shown in Figure 4b. The FZPs mostly exhibited high quality with zones free from
  • shifting plasmon resonances of the zones made out of gold. d) A STEM-DF image of the fabricated 8 × 8 array of 64 FZPs. e) A STEM-DF image of FZP of row 6 and column 6. Overview of the FZP and ion beam lithography process parameters.a Supporting Information Additional SEM images of inner and outermost
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2018

Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications

  • Mykola Borzenkov,
  • Maria Moros,
  • Claudia Tortiglione,
  • Serena Bertoldi,
  • Nicola Contessi,
  • Silvia Faré,
  • Angelo Taglietti,
  • Agnese D’Agostino,
  • Piersandro Pallavicini,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2018, 9, 2040–2048, doi:10.3762/bjnano.9.193

Graphical Abstract
  • antibacterial films and coatings. Keywords: antibacterial properties; gold nanostars; photothermal effect; poly(vinyl alcohol) films; Introduction The photothermal properties of non-spherical gold nanoparticles possessing localized surface plasmon resonance (LSPR) located in NIR range has already been
PDF
Album
Supp Info
Full Research Paper
Published 23 Jul 2018
Other Beilstein-Institut Open Science Activities