Search results

Search for "ligands" in Full Text gives 275 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Colorimetric detection of Cu2+ based on the formation of peptide–copper complexes on silver nanoparticle surfaces

  • Gajanan Sampatrao Ghodake,
  • Surendra Krishna Shinde,
  • Rijuta Ganesh Saratale,
  • Avinash Ashok Kadam,
  • Ganesh Dattatraya Saratale,
  • Asad Syed,
  • Fuad Ameen and
  • Dae-Young Kim

Beilstein J. Nanotechnol. 2018, 9, 1414–1422, doi:10.3762/bjnano.9.134

Graphical Abstract
  • samples [13][14]. However, the use of gold and/or platinum limits the affordability of sensing probe. As exemplified in this work, cost-effective silver nanoparticles (AgNPs) having specifically modified ligands for detecting lower concentrations of Cu2+ offer a more portable and practical approach. In a
  • Cu2+-binding casein peptide ligands. The solution of aggregates was incubated for 20 min to allow for the coordination to occur. Results and Discussion Synthesis and characterization of casein peptide-capped AgNPs The surface plasmon resonance (SPR) of spherical AgNPs immediately caused an absorbance
  • below the normal blood concentration of Cu2+, which is in the range of 24–135 µg/dL [27]. The interaction of Cu2+ with the peptide ligands on the AgNP surfaces attracts neighboring AgNPs, which is observed as a color change from yellow to red. The change in absorbance was monitored by UV–vis
PDF
Album
Full Research Paper
Published 15 May 2018

Chemistry for electron-induced nanofabrication

  • Petra Swiderek,
  • Hubertus Marbach and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2018, 9, 1317–1320, doi:10.3762/bjnano.9.124

Graphical Abstract
  • surface and are decomposed under the tightly focused electron beam to yield a solid deposit. The precursor consists of elements that are desired in the deposit and of ligands which provide the molecules with sufficient volatility to be handled via a gas injection system. Ideally, the precursor molecule
  • dissociates completely under the impact of an impinging electron so that the desired nonvolatile elements remain on the surface while the ligands desorb and are pumped out of the vacuum chamber. However, until recently, FEBID has relied nearly exclusively on precursors that were developed specifically for
  • the ligands is co-deposited along with the desired elements. This unintended contamination often deteriorates the targeted properties of the deposit and thus impedes the progress of FEBID technology [7][8]. Novel molecular precursors and improved processes are thus needed to advance FEBID to its full
PDF
Editorial
Published 30 Apr 2018

Formation mechanisms of boron oxide films fabricated by large-area electron beam-induced deposition of trimethyl borate

  • Aiden A. Martin and
  • Philip J. Depond

Beilstein J. Nanotechnol. 2018, 9, 1282–1287, doi:10.3762/bjnano.9.120

Graphical Abstract
  • exclusively, and temperature-dependent desorption of methyl ligands from dissociated TMB precursor, which result in large changes in the deposition rate and stoichiometry as a function of the temperature. Conclusion In conclusion, the deposition mechanisms of EBID using TMB precursor were explored at silicon
PDF
Album
Supp Info
Letter
Published 24 Apr 2018

Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition

  • Federico Venturi,
  • Gian Carlo Gazzadi,
  • Amir H. Tavabi,
  • Alberto Rota,
  • Rafal E. Dunin-Borkowski and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2018, 9, 1040–1049, doi:10.3762/bjnano.9.97

Graphical Abstract
  • a substrate to decompose molecules that are adsorbed on the surface. The non-volatile part of the molecule is deposited, whereas volatile ligands are pumped away. FEBID is a versatile technique for nanoprototyping and research, as it permits the deposition of material in a variety of shapes with
PDF
Album
Full Research Paper
Published 03 Apr 2018

Towards the third dimension in direct electron beam writing of silver

  • Katja Höflich,
  • Jakub Mateusz Jurczyk,
  • Katarzyna Madajska,
  • Maximilian Götz,
  • Luisa Berger,
  • Carlos Guerra-Nuñez,
  • Caspar Haverkamp,
  • Iwona Szymanska and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 842–849, doi:10.3762/bjnano.9.78

Graphical Abstract
  • ]. For the deposition of metals, typically metal-organic precursor compounds are employed [3]. The organic ligands bring the desired metal into the gas phase. Hence, a sufficiently high stability and vapor pressure is usually accompanied by a large amount of carbon in the compound [10]. This carbon is
  • appropriate ligands. Even more importantly, the ligands tend to be only weakly bonded and, thus, easily exchange the metal atom [26]. These properties exclude the gas-phase FEBID of silver for conventional gas-injection systems (GIS) that are flanged at the outer chamber walls. Recently, the first gas-phase
  • adsorbate-limited deposition regime. Dependent on the actual dwell time of the beam, co-dissociation of non-desorbed ligands as well as of residual carbon hydrates from the vacuum background is expected. Figure 2 displays results for a dwell time series using a 150 pA beam for both precursor compounds. The
PDF
Album
Letter
Published 08 Mar 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • surface treatment. One approach is the functionalization of the surfaces with various ligands. For instance, grafting a thin molecular film with hydrophobic tail groups on a surface, formed by self-assembly process, prevents the formation of nano- or microdroplets of water on the treated sample, or
  • , but also by the interactions of the NPs and silicon substrate during nanomanipulation in AFM in tapping mode [23]. Despite its inertness [24], Au NPs can be relatively easily functionalized with organic ligands resulting in the formation of stable colloids [23][25]. The possibility of changing the
  • ligands chain length, tail group and the packing order (disorder) of the molecular coating makes functionalized NPs an attractive model systems for studying the nature of interactions, and particularly adhesion at the nano and molecular level. The prospect of modifying the chain length of the ligands
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • , and electronic interactions between the stabilizing ligands and nanoparticles [11]. Besides, the creation of a Schottky junction with a noble metal and a semiconductor acts to retard the recombination rate of electrons and holes [12]. LSPR takes place when noble metal NPs are excited by the
PDF
Album
Review
Published 19 Feb 2018

Facile phase transfer of gold nanorods and nanospheres stabilized with block copolymers

  • Yaroslav I. Derikov,
  • Georgiy A. Shandryuk,
  • Raisa V. Talroze,
  • Alexander A. Ezhov and
  • Yaroslav V. Kudryavtsev

Beilstein J. Nanotechnol. 2018, 9, 616–627, doi:10.3762/bjnano.9.58

Graphical Abstract
  • of pyridine groups with the nanoparticle surface is weaker, thus retaining an opportunity for further changes of the stabilizing ligands. The relative shortcoming of our method is its low net yield, which is below 50% when taking into account both the synthetic and phase transfer stages. Using TEM
PDF
Album
Full Research Paper
Published 16 Feb 2018

Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

  • Ragesh Kumar T P,
  • Paul Weirich,
  • Lukas Hrachowina,
  • Marc Hanefeld,
  • Ragnar Bjornsson,
  • Helgi Rafn Hrodmarsson,
  • Sven Barth,
  • D. Howard Fairbrother,
  • Michael Huth and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2018, 9, 555–579, doi:10.3762/bjnano.9.53

Graphical Abstract
  • electron–molecule interactions rather than the more common thermal fragmentation of precursor species, and various classes of chemical compounds have been considered [4][5] as precursors for FEBID. For instance, metalorganic precursors containing hydrocarbons and chelating ligands can be stable precursors
  • and simple in handling, but these benefits come at the expense of incorporation of large amounts of carbon in the deposits by incomplete decomposition or co-deposition of the liberated ligands. Recent developments demonstrate elegant deposit purification techniques to obtain pure, high quality metals
  • concluded that in general electron induced dissociation of surface adsorbed precursor molecules proceeds in two steps. Electron induced desorption of ligands associated with the precursor occurs to some extent in the first step (e.g., desorption of one of the PF3 groups in Pt(PF3)4 to form a Pt(PF3)3
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2018

Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

  • Nagamalai Vasimalai,
  • Vânia Vilas-Boas,
  • Juan Gallo,
  • María de Fátima Cerqueira,
  • Mario Menéndez-Miranda,
  • José Manuel Costa-Fernández,
  • Lorena Diéguez,
  • Begoña Espiña and
  • María Teresa Fernández-Argüelles

Beilstein J. Nanotechnol. 2018, 9, 530–544, doi:10.3762/bjnano.9.51

Graphical Abstract
  • . Generally, the synthesis of C-dots is a multistep and tedious procedure, which is often expensive. Moreover, a surface passivation with other ligands or additives is frequently needed in order to obtain exacerbated intrinsic fluorescence properties [5][12][13]. Recently, green synthesis methods of C-dots
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2018

Electron interaction with copper(II) carboxylate compounds

  • Michal Lacko,
  • Peter Papp,
  • Iwona B. Szymańska,
  • Edward Szłyk and
  • Štefan Matejčík

Beilstein J. Nanotechnol. 2018, 9, 384–398, doi:10.3762/bjnano.9.38

Graphical Abstract
  • both the carboxylate ligands and/or the amine ligands from the complexes. Moreover, the fragmentation of the ligands themselves is visible in the mass spectrum below m/z 140. For the studied complexes the metallated ions containing both ligands, e.g., Cu2(O2CC2F5)(RNH2)+, Cu2(O2CC2F5)3(RNH2)2+ confirm
  • -friendly than copper(I) compounds, which are usually air and moisture sensitive, which results in decomposition of the precursor itself. Also, introduction of amine ligands was expected to be advantageous. In fact, the reducing action of ammine ligands was discussed previously with respect to FEBID
  • secondary electrons in FEBID acting on much wider range than is the focus of the primary beam leads to broadening of the deposited structure [36]. The importance of the DI and/or DEA processes in FEBID was also discussed by Warneke et al. [37] with the focus on the appropriate choice of the ligands on the
PDF
Album
Full Research Paper
Published 01 Feb 2018

Wafer-scale bioactive substrate patterning by chemical lift-off lithography

  • Chong-You Chen,
  • Chang-Ming Wang,
  • Hsiang-Hua Li,
  • Hong-Hseng Chan and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2018, 9, 311–320, doi:10.3762/bjnano.9.31

Graphical Abstract
  • therefore be fulfilled with different molecules, e.g., ligands, and the substrate is active for biological responses. Comparing to conventional lithographic stamping processes which use mobile inks, this approach solves the problems of molecular lateral diffusion and gas transport obstacles. The fabricated
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2018

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • sensitizing NiO surfaces for an optimized photon absorption is an on-surface dye synthesis, which has earlier been termed the “surfaces-as-ligands” approach [42]. The first ligand is designed to anchor to the surface through groups such as carboxylic or phosphonic acids and has a metal-binding domain such as
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Gas-assisted silver deposition with a focused electron beam

  • Luisa Berger,
  • Katarzyna Madajska,
  • Iwona B. Szymanska,
  • Katja Höflich,
  • Mikhail N. Polyakov,
  • Jakub Jurczyk,
  • Carlos Guerra-Nuñez and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 224–232, doi:10.3762/bjnano.9.24

Graphical Abstract
  • organic precursors are introduced with a gas injection system (GIS) and physisorb onto the substrate. The electrons induce local precursor dissociation on the surface, which in the ideal case results in a selective and pure metal deposit and volatile organic ligands. However, the organic ligand elements
  • interaction into deposited metal atoms and volatile, yet still physisorbed ligands. Due to the high electron flux within the PE beam area, the desorption rate of these volatile ligands is lower than their dissociation rate, resulting in a higher carbon content. Outside the PE beam area, the adsorbates still
  • dissociate by electron impact into deposited metal atoms and volatile physisorbed ligands. Yet the desorption rate of the ligands is larger than their further dissociation by the much lower electron flux, preventing co-deposition and leading to purer silver deposits. Due to writing in multiple passes, the
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2018

Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID

  • Marcos V. Puydinger dos Santos,
  • Aleksandra Szkudlarek,
  • Artur Rydosz,
  • Carlos Guerra-Nuñez,
  • Fanny Béron,
  • Kleber R. Pirota,
  • Stanislav Moshkalev,
  • José Alexandre Diniz and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 91–101, doi:10.3762/bjnano.9.11

Graphical Abstract
  • capable of defining 3-dimensional metal deposits at nanometre scale for above applications. However, codeposition of organic ligands when using organometallic precursors is a typical problem that limits FEBID of pure metal nanostructures. In this work, we present a comparative study using a post-growth
  • (up to 95 atom % relative to carbon) were obtained by means of impact-enhanced desorption of residual organic ligands using a supersonic argon carrier gas jet to deliver the organometallic precursor [45]. Other works suggest the autocatalytic deposition of carbonyls, such as Fe(CO)5 [46][47] and Co2
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2018

Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

  • Ziyan Warneke,
  • Markus Rohdenburg,
  • Jonas Warneke,
  • Janina Kopyra and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2018, 9, 77–90, doi:10.3762/bjnano.9.10

Graphical Abstract
  • desired solid material and organic ligands that enhance their volatility. Metal organic precursors are thus used to fabricate metallic deposits. In the ideal case, a pure metal should remain at the surface while the organic ligands decompose into volatile products that are pumped away. However, this is
  • usually not the case and material from the ligands tends to be incorporated in the deposit and thus deteriorates its physical properties [1][9][10][11]. Trimethyl(methylcyclopentadienyl)platinum(IV) (MeCpPtMe3, Figure 1a) is widely applied as precursor for deposition of Pt because of its very favourable
  • with equally small contributions of ethane (C2H6) according to a mass spectrum recorded during the initial stages of electron exposure (Supporting Information File 1, Figure S2). The very small quantity of C2H6, confirms again the previous conclusion [10] that recombination of CH3 ligands dissociating
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2018

Response under low-energy electron irradiation of a thin film of a potential copper precursor for focused electron beam induced deposition (FEBID)

  • Leo Sala,
  • Iwona B. Szymańska,
  • Céline Dablemont,
  • Anne Lafosse and
  • Lionel Amiaud

Beilstein J. Nanotechnol. 2018, 9, 57–65, doi:10.3762/bjnano.9.8

Graphical Abstract
  • ligands that are solid and stable under ambient conditions. They are directly deposited on the surface for studying the fragmentation with surface science tools. Results: Infrared spectroscopy and high-resolution electron energy loss spectroscopy (HREELS) are combined to show that the precursor is able to
  • spontaneously lose amine ligands under vacuum. This loss can be enhanced by mild heating. The combination of mass spectrometry and low-energy electron irradiation (0–15 eV) shows that full amine ligands can be released upon irradiation, and that fragmentation of the perfluorinated ligands is induced by
  • electrons of energy as low as 1.5 eV. Finally, the cross section for this process is estimated from the temporal evolution in the experiments on electron-stimulated desorption (ESD). Conclusion: The release of full ligands under high vacuum and by electron irradiation, and the cross section measured here
PDF
Album
Full Research Paper
Published 05 Jan 2018

Impact of titanium dioxide nanoparticles on purification and contamination of nematic liquid crystals

  • Dmitrii Pavlovich Shcherbinin and
  • Elena A. Konshina

Beilstein J. Nanotechnol. 2017, 8, 2766–2770, doi:10.3762/bjnano.8.275

Graphical Abstract
  • by plasma synthesis and were not covered with any ligands. Dry NPs were added to LCs at a concentration of 0.25, 0.5 and 1 wt %. The composites were prepared in isotropic phase over one hour by ultrasonication. To estimate ion density (c) and average diffusion coefficient (D) in LC1, LC2 and their
PDF
Album
Letter
Published 21 Dec 2017

The rational design of a Au(I) precursor for focused electron beam induced deposition

  • Ali Marashdeh,
  • Thiadrik Tiesma,
  • Niels J. C. van Velzen,
  • Sjoerd Harder,
  • Remco W. A. Havenith,
  • Jeff T. M. De Hosson and
  • Willem F. van Dorp

Beilstein J. Nanotechnol. 2017, 8, 2753–2765, doi:10.3762/bjnano.8.274

Graphical Abstract
  • ], they are often inefficient in removing the ligands that are currently used to make the precursor molecules volatile [28][29][30]. The decomposition of the precursor is then incomplete, leaving large parts of the ligand structure on the surface. This leads to for instance low metal content and poor
  • sufficiently reactive to yield the desired reaction product in a single step, but not so reactive that it dissociates unselectively or has a short shelf life. It has already been determined that electrons cannot remove large ligands. Examples are the cyclopentadienyl ligand in trimethyl(methylcyclopentadienyl
  • several questions. How do the ligands determine stability, shelf life and volatility? What is the origin of the short lifetime of ClAuCO in vacuum? Why is MeAuPMe3 volatile, while ClAuPMe3 is not? And can we, based on the results we have, come to a rational design of a Au precursor with the desired
PDF
Album
Full Research Paper
Published 20 Dec 2017

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • . They can be combined with polymers to form conductive composites and have been used as the basis of molecular electronic devices. This review summarizes the multidimensional role of surface ligands that cover their metal cores. Ligands not only passivate crystal facets and determine growth rates and
  • shapes; they also affect size and colloidal stability. Particle shapes can be tuned via the ligand choice while ligand length, size, ω-functionalities, and chemical nature influence shelf-life and stability of nanoparticles in dispersions. When particles are deposited, ligands affect the electrical
  • properties of the resulting film, the morphology of particle films, and the nature of the interfaces. The effects of the ligands on sintering, cross-linking, and self-assembly of particles in electronic materials are discussed. Keywords: conductivity; inks; layers; ligands; nanoparticles; Introduction
PDF
Album
Review
Published 07 Dec 2017

Synthesis of [{AgO2CCH2OMe(PPh3)}n] and theoretical study of its use in focused electron beam induced deposition

  • Jelena Tamuliene,
  • Julian Noll,
  • Peter Frenzel,
  • Tobias Rüffer,
  • Alexander Jakob,
  • Bernhard Walfort and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 2615–2624, doi:10.3762/bjnano.8.262

Graphical Abstract
  • coordination polymer in the solid state as evidenced by single crystal X-ray structure analysis. The coordination geometry at Ag+ is of the [3 + 1] type, whereby the carboxylate anions act as bridging ligands. The formation of PPh3–Ag(I) coordinative bonds results in distorted T-shaped AgPO2 units, which are
  • ). Thereby, the carboxylate anions act as µ-bridging ligands to link two adjacent silver(I) ions. Due to the coordination of a PPh3 group to Ag(I), virtually planar AgPO2 coordination units are observed. Planarity is revealed by the calculation of a mean plane. The average deviation from planarity amounts to
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2017

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • CNT yield [21]. The existence of the corresponding carbon contamination was traced back to deposits from the residual gas in the high-vacuum (HV) environment and the dissociation of the carbon-containing precursor ligands [19]. With our “surface science approach” to FEBIP, that is, working in an ultra
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Interactions of low-energy electrons with the FEBID precursor chromium hexacarbonyl (Cr(CO)6)

  • Jusuf M. Khreis,
  • João Ameixa,
  • Filipe Ferreira da Silva and
  • Stephan Denifl

Beilstein J. Nanotechnol. 2017, 8, 2583–2590, doi:10.3762/bjnano.8.258

Graphical Abstract
  • further irradiated by a high-energy electron beam. The electron beam decomposes the precursor molecules, leaving the metal on the surface and the organic ligands are pumped away [2][3]. FEBID has shown high potential in growing defined three-dimensional structures close to any geometry and to write on
  • uneven surfaces. Although FEBID is a promising technique, improvements are still needed in order to get pure and highly resolved deposits. CVD precursors are normally used as FEBID precursors; however, their performance is limited, leading to co-deposition of ligands and ligand fragments together with
  • well as to minimise the adverse or unwanted effects, such as non-pure metal deposition resulting from the co-deposition of ligands. In order to improve the quality of metallic deposits, LEE interactions with organometallic precursors have been studied. Several studies have been reported, e.g., DEA
PDF
Album
Full Research Paper
Published 04 Dec 2017

Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

  • Domagoj Belić,
  • Mostafa M. Shawrav,
  • Emmerich Bertagnolli and
  • Heinz D. Wanzenboeck

Beilstein J. Nanotechnol. 2017, 8, 2530–2543, doi:10.3762/bjnano.8.253

Graphical Abstract
  • is essential for successful binding of ligands, such as thiols [80]. From that point of view, our cleaning procedure presents a valuable approach for experimental realization of structurally sound, precisely patterned nanostructures of a high Au content, with exposed Au surfaces available for
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Strategy to discover full-length amyloid-beta peptide ligands using high-efficiency microarray technology

  • Clelia Galati,
  • Natalia Spinella,
  • Lucio Renna,
  • Danilo Milardi,
  • Francesco Attanasio,
  • Michele Francesco Maria Sciacca and
  • Corrado Bongiorno

Beilstein J. Nanotechnol. 2017, 8, 2446–2453, doi:10.3762/bjnano.8.243

Graphical Abstract
  • immobilize the peptide at the silicon surface. The same behavior can be assumed for shorter peptides. Test of amyloid-beta 1–40 binding by peptide ligands on HES The synthesized pentapeptide KLVFF and a commercial therapeutic heptapeptide, Semax, have been assayed to investigate their ability to bind full
  • bind full-length Aβ and to prevent its fibrillation [30]. Semax was chosen for its different behavior (as will be discussed below). The peptides were tested, as amyloid ligands, using the Cy3-labeled Aβ40 conjugate for fluorescence detection. As expected, after the immobilization of the unlabeled
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2017
Other Beilstein-Institut Open Science Activities