Search results

Search for "low temperature" in Full Text gives 371 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • employing an instrument from Renishaw, Inc., (U.K.), which was coupled to a confocal Leica DM2500 microscope. The laser wavelength applied to the samples was 785 nm. The samples under inspection were held on a Peltier cell and kept at low temperature (4 °C) in order to ensure the stability of SAMs under
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Wearable, stable, highly sensitive hydrogel–graphene strain sensors

  • Jian Lv,
  • Chuncai Kong,
  • Chao Yang,
  • Lu Yin,
  • Itthipon Jeerapan,
  • Fangzhao Pu,
  • Xiaojing Zhang,
  • Sen Yang and
  • Zhimao Yang

Beilstein J. Nanotechnol. 2019, 10, 475–480, doi:10.3762/bjnano.10.47

Graphical Abstract
  • lack of long term stability, due to the tendency of the material to lose water at high temperature and freeze at low temperature [14]. Glycerol is a commonly used, nontoxic antifreeze additive. Here, hydrogen bonding between glycerol and water competes with hydrogen bonding between the water molecules
  • , and the formation of ice at low temperature is restricted and the evaporation of water at high temperature is prohibited [11]. The graphene layer was formed on the hydrogel by directly drop casting the graphene solution onto the hydrogel and drying in an oven at 35 °C. The drying process removes the
PDF
Album
Supp Info
Letter
Published 14 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • heating at 130–190 °C for 5−20 h. It is observed that hydrothermal exposure of acid-treated graphitic carbon nitride (g-C3N4) nanosheets at low temperature generated larger NFs, whereas QDs are formed at higher temperatures. The formation of GCN hybrid materials was confirmed by powder X-ray diffraction
  • ) hydrothermal heating at low temperature (130 °C), the g-C3N4 sheet breaks into pieces in different orientations and generates flake-like shapes of the material. Upon further increase of the heating temperature, the process proceeds very fast and cuts the flakes into dot-like structures (i.e., QDs) even within
  • that there might be an incomplete transformation of the nanosheet to NFs. This is probably due to the reduced heating time at this low temperature; however, this did not affect the photoreduction capacity of these CN-NFs (130 °C of 5 h), which was found to be nearly similar to CN-10 (data not shown
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

  • Raquel Rodriguez-Lamas,
  • Dolors Pla,
  • Odette Chaix-Pluchery,
  • Benjamin Meunier,
  • Fabrice Wilhelm,
  • Andrei Rogalev,
  • Laetitia Rapenne,
  • Xavier Mescot,
  • Quentin Rafhay,
  • Hervé Roussel,
  • Michel Boudard,
  • Carmen Jiménez and
  • Mónica Burriel

Beilstein J. Nanotechnol. 2019, 10, 389–398, doi:10.3762/bjnano.10.38

Graphical Abstract
  • 1 h, the selected conditions led to dense and homogeneous LMO films. For strategy III, based on two consecutive deposition steps at 500 and 750 °C, the critical parameters were: (i) the LMO layer thickness obtained by growth at low temperature (d1) to stabilize the Pt layer, and the LMO layer
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Intuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain

  • Sumit Tewari,
  • Jacob Bakermans,
  • Christian Wagner,
  • Federica Galli and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2019, 10, 337–348, doi:10.3762/bjnano.10.33

Graphical Abstract
  • –machine augmented system in which the operator and the machine are connected by a real-time simulation. Here, a 3D motion control system is integrated with an ultra-high vacuum (UHV) low-temperature scanning tunnelling microscope (STM). Moreover, we coupled a real-time molecular dynamics (MD) simulation
  • annealing cycles to obtain an atomically flat Au(111) facet showing herringbone surface reconstruction. We further prepare the surface at low temperature by creating a localized stress pattern [11][12][13][14] on the surface using gentle indentation of the STM tip at a spot on the surface remote from the
  • -empirical potentials for such highly under-coordinated systems. As the actual bulk shape of the tip is unknown in our experiments we assume an isotropic tip structure, which could also cause certain discrepancies between the experiment and the simulation. Conclusion We have modified our low-temperature
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2019

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • , a 100 nm thick transparent tin-doped indium oxide (In2O3:Sn, ITO) was deposited at low power and low temperature, using radio-frequency (RF) magnetron sputtering. The cell area was defined as 5 mm × 5 mm, using a mask during ITO deposition. The reported equivalent thickness values of thin films on
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • University, Tietotie 3, 02150 Espoo, Finland 10.3762/bjnano.10.26 Abstract We report on the growth of ZnO nanocrystals having a hexagonal, prismatic shape, sized 700 nm × 600 nm, on bare indium tin oxide (ITO) substrates. The growth is induced by a low ion flux and involves a low-temperature
  • patterned substrates and a cost-effective growth technique. In particular, we demonstrate the growth of hexagonal faceted self-assembled twin ZnO NCs on bare indium tin oxide (ITO) substrate via a facile low temperature electrodeposition technique that has the potential of yielding good crystal quality with
  • positions by employing polymer-coated ITO substrates patterned with periodic ordered pores. The growth of c-axis-aligned twin ZnO nanocrystal arrays was achieved at specific sites via a low-temperature electrodeposition technique with excellent control over orientation, dimension, and location. The effect
PDF
Album
Full Research Paper
Published 24 Jan 2019

Thermal control of the defunctionalization of supported Au25(glutathione)18 catalysts for benzyl alcohol oxidation

  • Zahraa Shahin,
  • Hyewon Ji,
  • Rodica Chiriac,
  • Nadine Essayem,
  • Franck Rataboul and
  • Aude Demessence

Beilstein J. Nanotechnol. 2019, 10, 228–237, doi:10.3762/bjnano.10.21

Graphical Abstract
  • to completely remove the glutathione molecules from the gold surface. For the TGA of the ZrO2 support, 2.4% weight loss was observed at low temperature that corresponds to trace water (Figure 2). After the deposition of 1 wt % Au using Au25(SG)18 on ZrO2, a first weight loss of 2.4% is observed and a
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2019

Raman study of flash-lamp annealed aqueous Cu2ZnSnS4 nanocrystals

  • Yevhenii Havryliuk,
  • Oleksandr Selyshchev,
  • Mykhailo Valakh,
  • Alexandra Raevskaya,
  • Oleksandr Stroyuk,
  • Constance Schmidt,
  • Volodymyr Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2019, 10, 222–227, doi:10.3762/bjnano.10.20

Graphical Abstract
  • that the laser power does not affect the samples are our recently reported low-temperature measurements (77 K) [34], which revealed no qualitative changes in the spectra except for an expected temperature-induced shift and narrowing of the phonon peaks. The Raman spectra of the ink1-derived films
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2019

pH-mediated control over the mesostructure of ordered mesoporous materials templated by polyion complex micelles

  • Emilie Molina,
  • Mélody Mathonnat,
  • Jason Richard,
  • Patrick Lacroix-Desmazes,
  • Martin In,
  • Philippe Dieudonné,
  • Thomas Cacciaguerra,
  • Corine Gérardin and
  • Nathalie Marcotte

Beilstein J. Nanotechnol. 2019, 10, 144–156, doi:10.3762/bjnano.10.14

Graphical Abstract
  • mesopores to be obtained up to pH 6.5. Interestingly, this relatively inexpensive silica precursor and the rather environmentally friendly synthesis route employed (neutral pH conditions, low temperature, short synthesis and aging times) open up new opportunities for batch and continuous mode large-scale
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • interesting both from stability and surface area aspects. Pollutant removal from aqueous solutions Removal of 4-nitrophenol We have previously reported that a first-generation HYCA material prepared via a low-temperature calcination process in air very efficiently adsorbs cationic pollutants such as Pb2+, Cd2
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • states and VB/CB” (valence band/conduction band) “by adjusting the position of bandgap to obtain an optimized narrow value” [23]. Thus, using a solution-based single-source precursor (Er-doped KSnF3), oxygen-vacancy-rich nanocrystals of co-doped Er and F SnO2 were obtained at low temperature with an
PDF
Album
Full Research Paper
Published 02 Jan 2019

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • the three missing atoms at low temperature (4.89 K) with AFM using an STM/AFM setup they developed [7]. However, not all of the six carbon atoms could be observed with STM in that study. In this work, using a simultaneous STM/AFM working with sub-angstrom oscillation amplitudes we intended to gain
  • topography corresponds to the middle of the two C atoms. The observation of STM topography maxima between a-type and b-type carbon atoms in HOPG is predicted to be possible in the work by Teobaldi and co-workers [38]. Upon obtaining remarkable contrast variations with the bias voltage in low-temperature STM
PDF
Album
Full Research Paper
Published 28 Nov 2018

Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formation

  • Claudio H. B. Silva,
  • Maria Iliut,
  • Christopher Muryn,
  • Christian Berger,
  • Zachary Coldrick,
  • Vera R. L. Constantino,
  • Marcia L. A. Temperini and
  • Aravind Vijayaraghavan

Beilstein J. Nanotechnol. 2018, 9, 2936–2946, doi:10.3762/bjnano.9.272

Graphical Abstract
  • between them, graphene oxide reduction was performed at diluted conditions with hydrazine at low temperature (see Experimental section). The resulting dispersions of rGO-25 and rGO/PANI nanocomposites are remarkably stable (see Supporting Information File 1), more so than sample rGO-80. This indicates
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • at low temperature in the gas phase, which can strongly interact with the exposed surface leading to distinct physical and chemical changes [63][76]. Therefore, it is interesting to investigate the influence of different kinds of rf plasmas on the surface of thin silver films, which are important
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • epitaxy, metal-organic chemical vapor deposition, pulsed laser deposition), or by wet-chemical processes (e.g., the hydrothermal method, electrochemical deposition) [4]. The hydrothermal growth of ZnO NRs is a relatively simple, versatile and low temperature process [5]. ZnO NRs are used in gas sensors
PDF
Album
Full Research Paper
Published 23 Oct 2018

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

  • Qingquan Kong,
  • Yichun Yin,
  • Bing Xue,
  • Yonggang Jin,
  • Wei Feng,
  • Zhi-Gang Chen,
  • Shi Su and
  • Chenghua Sun

Beilstein J. Nanotechnol. 2018, 9, 2526–2532, doi:10.3762/bjnano.9.235

Graphical Abstract
  • underlines the need to develop high-performance catalysts for CH4 oxidation at low temperature. Except as fuel in natural gas, much of the CH4 that is released is from industrial applications, such as ventilation air methane (VAM) from underground coal mining. This is a serious issue because CH4 has severe
  • global warming effects, around 25 times greater than that of carbon dioxide (CO2). For a more efficient use of natural gas and to minimize the direct emission of CH4, the catalytic oxidation of CH4 at low temperature has been investigated extensively over the last decades [5][6][7][8]. Noble metals have
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2018

High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)1−x(MnSb)x alloy

  • Leonid N. Oveshnikov,
  • Elena I. Nekhaeva,
  • Alexey V. Kochura,
  • Alexander B. Davydov,
  • Mikhail A. Shakhov,
  • Sergey F. Marenkin,
  • Oleg A. Novodvorskii,
  • Alexander P. Kuzmenko,
  • Alexander L. Vasiliev,
  • Boris A. Aronzon and
  • Erkki Lahderanta

Beilstein J. Nanotechnol. 2018, 9, 2457–2465, doi:10.3762/bjnano.9.230

Graphical Abstract
  • of conducting holes [1][3]. To reach high values of the Curie temperature, Tc, materials with high Mn concentration are required, which can be achieved by using non-equilibrium growth methods, such as low-temperature molecular-beam epitaxy. Thus, the solubility limit of Mn in Ga1−xMnxAs can be
PDF
Album
Full Research Paper
Published 14 Sep 2018

Pinning of a ferroelectric Bloch wall at a paraelectric layer

  • Vilgelmina Stepkova and
  • Jiří Hlinka

Beilstein J. Nanotechnol. 2018, 9, 2356–2360, doi:10.3762/bjnano.9.220

Graphical Abstract
  • its the edges along the principal pseudocubic crystallograpic axes (see Figure 8). The BaTiO3 and SrTiO3 Ginzburg–Landau–Devonshire model potential parameters used in the present calculations are those of [12], except for the temperature parameter, which was set to 118 K here (low temperature is
PDF
Album
Full Research Paper
Published 31 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • [71]. The cells with such modified MASnI3 absorbers showed a PCE of 6.63% (Table 1) with a relatively high FF of ≈64% (Figure 4a). High-quality MASnI3 films yielding a PCE of 1.86% were prepared using a low-temperature vapor-assisted deposition [115]. The stability of MASnI3- and CsSnI3-based solar
PDF
Album
Review
Published 21 Aug 2018

Influence of the thickness of an antiferromagnetic IrMn layer on the static and dynamic magnetization of weakly coupled CoFeB/IrMn/CoFeB trilayers

  • Deepika Jhajhria,
  • Dinesh K. Pandya and
  • Sujeet Chaudhary

Beilstein J. Nanotechnol. 2018, 9, 2198–2208, doi:10.3762/bjnano.9.206

Graphical Abstract
  • -magnon scattering is also discussed. The AF-induced interfacial damping parameter is derived by studying the evolution of damping with inverse CoFeB thickness. The static magnetic measurements also reveal the interlayer exchange coupling across the IrMn layer both at room temperature and low temperature
  • . The asymmetric hysteresis loop and training effect observed at low temperature is related to the presence of a metastable AF domain state. We show that both the static and dynamic magnetic properties of trilayer films can be adjusted over a wide range by changing the thickness of the IrMn spacer layer
  • the similar trend for Hk since both coercivity and anisotropy are correlated with each other as suggested by Hoffmann [55]. At a low temperature of 10 K reached after both zero-field cooling (ZFC) and field cooling (FC) procedures from RT, the top and bottom CoFeB layers are still magnetically coupled
PDF
Album
Full Research Paper
Published 20 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • . Yb-doped In2O3 NTs show a response of 2.4 toward 100 ppb of formaldehyde [213]. Mg-doped In2O3 NTs exhibit a high response at low temperature (150 °C). Pure and Mg-doped In2O3 NTs have an average diameter of 80 nm. The smooth surface of In2O3 NTs becomes coarser with doping of Mg. Mg doping
  • and recovery time of 2 mol % W-doped NiO NTs is 178 s and 152 s, respectively. Thus, W-doped NiO NTs can successfully detect low concentrations (15 ppm) of xylene with a response of 2.17 [220]. Pd-doped TiO2 NFs (average diameter 250 nm) show high sensitivity to NO2 at a relatively low temperature of
  • /SnO2 mixed NFs show response time/recovery times of 1/305 s [224]. In2O3-CeO2 NTs synthesized by electrospinning exhibit an excellent response toward H2S at low temperature (25–110 °C) and to acetone at relatively high temperature (300 °C) [225]. The outer diameter and wall thickness are tuned in the
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Synthesis of carbon nanowalls from a single-source metal-organic precursor

  • André Giese,
  • Sebastian Schipporeit,
  • Volker Buck and
  • Nicolas Wöhrl

Beilstein J. Nanotechnol. 2018, 9, 1895–1905, doi:10.3762/bjnano.9.181

Graphical Abstract
  • different morphologies were deposited. Four main morphological types were identified by SEM analysis and Raman spectroscopy. It was shown how the combination of substrate temperature and bias voltage determines the resulting morphology. Low temperature and low bias voltage lead to carbon rods. Successively
PDF
Album
Full Research Paper
Published 29 Jun 2018

Cryochemical synthesis of ultrasmall, highly crystalline, nanostructured metal oxides and salts

  • Elena A. Trusova and
  • Nikolai S. Trutnev

Beilstein J. Nanotechnol. 2018, 9, 1755–1763, doi:10.3762/bjnano.9.166

Graphical Abstract
  • and structural materials. In a 1962 publication, theoretical justification was given for the use of low (negative) temperatures for studying the mechanisms behind chemical processes and the peculiarities of reaction kinetics in the low-temperature region in order to improve the synthesis of ultra
  • possible for compact states [5][6][7]. Most often, aqueous solutions are used; however, solutions in organic solvents (e.g., acetic acid, benzene, tert-butanol, and toluene) can also be used when reasonable equilibrium pressure is applied in the solid state at low temperature. The low solubility of many
PDF
Album
Full Research Paper
Published 12 Jun 2018

A zero-dimensional topologically nontrivial state in a superconducting quantum dot

  • Pasquale Marra,
  • Alessandro Braggio and
  • Roberta Citro

Beilstein J. Nanotechnol. 2018, 9, 1705–1714, doi:10.3762/bjnano.9.162

Graphical Abstract
  • coincides with the magnitude of the discontinuous drop Ic = |ΔI| (dots in the figures). Hence, a measure of the critical current at low temperature can be used to indirectly probe the magnitude of the discontinuous drop and the existence of topological phase transitions and zero-energy modes even when a
PDF
Album
Full Research Paper
Published 08 Jun 2018
Other Beilstein-Institut Open Science Activities