Search results

Search for "shear" in Full Text gives 182 result(s) in Beilstein Journal of Nanotechnology.

Active multi-point microrheology of cytoskeletal networks

  • Tobias Paust,
  • Tobias Neckernuss,
  • Lina Katinka Mertens,
  • Ines Martin,
  • Michael Beil,
  • Paul Walther,
  • Thomas Schimmel and
  • Othmar Marti

Beilstein J. Nanotechnol. 2016, 7, 484–491, doi:10.3762/bjnano.7.42

Graphical Abstract
  • ; Introduction The dynamic shear modulus describes properties of polymer networks. It can be determined by recording and mathematically transforming the thermal motion of a particle embedded in a viscoelastic medium into the frequency domain. Since no external forces are applied to the motion of the particle
  • , this method is named passive microrheology [1][2][3][4]. The resulting shear modulus shows the elastic and diffusive behavior of the investigated medium over the frequency range accessible by the measuring setup. This output is the result of different methods handling the unilateral Laplace transform
  • [5][6][7]. By exciting a particle with an oscillating force, the shear modulus at a specific frequency can be determined by measuring the response of the particle. The motion of the particle also includes information about the damping and the viscosity of the surrounding medium. This method is known
PDF
Album
Full Research Paper
Published 24 Mar 2016

Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

  • Amlan Dutta,
  • Arup Kumar Raychaudhuri and
  • Tanusri Saha-Dasgupta

Beilstein J. Nanotechnol. 2016, 7, 228–235, doi:10.3762/bjnano.7.21

Graphical Abstract
  • system. The resolved shear load can thereby exceed the critical limit for producing the Shockley dislocations. The calculated shear-strain map indicates that the partial dislocations nucleate at the inner surface and propagate towards the outer periphery, thereby leaving behind trails of stacking faults
  • highlighted, the partial dislocation at the boundary of an abruptly terminated stacking fault moves towards the outer surface and finally disappears during the recovery. Color-coded snapshots indicating the atomic shear strains are also given by the side. Snapshot of the nanostructure at 575 K temperature
PDF
Album
Full Research Paper
Published 10 Feb 2016

Simultaneous cancer control and diagnosis with magnetic nanohybrid materials

  • Reza Saadat and
  • Franz Renz

Beilstein J. Nanotechnol. 2016, 7, 121–125, doi:10.3762/bjnano.7.14

Graphical Abstract
  • hence be assumed that a network (consisting of about three units in all spatial directions) of the MNP was obtained. We assume that bigger cluster units do not appear long enough to be detected due to shear forces destroying them. The cluster units are stable in a pH range from 13 to 4.5. At lower pH
PDF
Album
Supp Info
Letter
Published 27 Jan 2016

Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

  • Elena Dellacasa,
  • Li Zhao,
  • Gesheng Yang,
  • Laura Pastorino and
  • Gleb B. Sukhorukov

Beilstein J. Nanotechnol. 2016, 7, 81–90, doi:10.3762/bjnano.7.10

Graphical Abstract
  • resonance frequency of the quartz crystal oscillator, A is the area of the electrode (0.205 cm2), ρq is the quartz density (2.648 g/cm3), and µq is its shear modulus (2.947·1011 g/cm·s2). The cleaned electrodes were immersed into aqueous solutions of PSS and PAH (2 mg/mL) for 15 min and PLL (5 mg/mL) for 30
PDF
Album
Full Research Paper
Published 21 Jan 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • presents a computer aided design (CAD) image of the beam deflection unit. The red arrows indicate the directions of motion of the adjustable parts of the unit. To align the beam of light onto the free end of the oscillating cantilever several shear piezo actuators allow for the movement of parts within the
  • beam deflection unit. The focusing optics is placed on two shear piezo elements in order to allow for horizontal movement and to adjust the light beam across the width of the cantilever. Additionally, the beam splitter is placed on two shear piezo elements rotating the beam splitter and therefore align
  • the light beam along the long axis of the cantilever. The reflected light from the cantilever irradiates directly onto the PSD with an adapted current to voltage converter (IV-converter). The detection unit, consisting of the PSD and IV-converter, may be moved by three 2D shear piezo elements
PDF
Album
Full Research Paper
Published 28 Dec 2015

Electroviscous effect on fluid drag in a microchannel with large zeta potential

  • Dalei Jing and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2015, 6, 2207–2216, doi:10.3762/bjnano.6.226

Graphical Abstract
  • ][14][15][16]. To characterize the EDL, zeta potential is defined, and it refers to the electrical potential at the shear plane separating the immobile fluid layer strongly attracted to the solid surface from the rest of the liquid. The magnitude of zeta potential is reported to be up to several
PDF
Album
Full Research Paper
Published 24 Nov 2015

Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

  • Arnaud Caron and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2015, 6, 1721–1732, doi:10.3762/bjnano.6.176

Graphical Abstract
  • not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation
  • mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix. Keywords: AFM indentation; dislocation
  • ; metallic glasses; metals; plasticity; shear transformation; Introduction Hardness testing has been widely applied by materials scientists and mechanical engineers to assess the mechanical properties of materials and to predict their behavior during machining processes or under tribological loading for the
PDF
Album
Full Research Paper
Published 13 Aug 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • chirality (Figure 5a), a displacement map can be obtained (Figure 5c–d) at picometer precision, which further reveals the strain distribution. Strain induced by bending can be mapped in two dimensions, and further proposed to be a dominant non-uniform shear strain. The strain in the nanotube is associated
  • instance, the evolution of defects (such as the shear strain present in CNTs as discussed in Section 3.1) along with the elastic/plastic deformation in CNT-reinforced composites under load can be well studied using similar techniques [109]. In contrast to the external stimuli, which are introduced through
PDF
Album
Review
Published 16 Jul 2015

Electrical characterization of single molecule and Langmuir–Blodgett monomolecular films of a pyridine-terminated oligo(phenylene-ethynylene) derivative

  • Henrry M. Osorio,
  • Santiago Martín,
  • María Carmen López,
  • Santiago Marqués-González,
  • Simon J. Higgins,
  • Richard J. Nichols,
  • Paul J. Low and
  • Pilar Cea

Beilstein J. Nanotechnol. 2015, 6, 1145–1157, doi:10.3762/bjnano.6.116

Graphical Abstract
  • 5 MHz, Δm(g) is the mass change, A is the electrode area, ρq is the density of the quartz (2.65 g·cm-3), μq is the shear modulus (2.95 × 1011 dyn·cm−2), and the molecular weight of 1 is 280 g·mol−1. Thus, the surface coverage of 1 incorporated into LB films, obtained from Equation 1, is 0.98 × 10−9
PDF
Album
Full Research Paper
Published 11 May 2015

Nanostructuring of GeTiO amorphous films by pulsed laser irradiation

  • Valentin S. Teodorescu,
  • Cornel Ghica,
  • Adrian V. Maraloiu,
  • Mihai Vlaicu,
  • Andrei Kuncser,
  • Magdalena L. Ciurea,
  • Ionel Stavarache,
  • Ana M. Lepadatu,
  • Nicu D. Scarisoreanu,
  • Andreea Andrei,
  • Valentin Ion and
  • Maria Dinescu

Beilstein J. Nanotechnol. 2015, 6, 893–900, doi:10.3762/bjnano.6.92

Graphical Abstract
  • for plastic flow. Such a mechanism can be imagined based on the shear transformation-zone theory of plastic deformation near the glass transition [30]. The temperature due to the laser heating was estimated by using the Heat Flow software [24]. Figure 8 shows the temperature variation at different
PDF
Album
Full Research Paper
Published 07 Apr 2015

Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium

  • Jana Vlachová,
  • Rebekka König and
  • Diethelm Johannsmann

Beilstein J. Nanotechnol. 2015, 6, 845–856, doi:10.3762/bjnano.6.87

Graphical Abstract
  • can be explained by nanoroughness. In other words, contact splitting (i.e., a transport of shear stress across many small contacts, rather than a few large ones) can be exploited to reduce partial slip. Keywords: contact mechanics; contact splitting; contact stiffness; partial slip; quartz crystal
  • be tested easily. The experiments were undertaken with a quartz crystal microbalance (QCM). The QCM is mostly known as a device for thickness determination, but it can equally well be employed to measure contact stiffness. In this regard, it is helpful to view the QCM as a shear wave reflectometer
  • related to the dissipation factor, D, by D = Γ/(2f). fF is the fundamental frequency, which is often 5 MHz. Zq = 8.8 × 106 kg∙m−2s−1 is the shear wave impedance of AT-cut quartz. is the area-averaged complex amplitude of the tangential stress at the resonator surface, and u0 is the amplitude of
PDF
Album
Full Research Paper
Published 30 Mar 2015

Entropy effects in the collective dynamic behavior of alkyl monolayers tethered to Si(111)

  • Christian Godet

Beilstein J. Nanotechnol. 2015, 6, 583–594, doi:10.3762/bjnano.6.60

Graphical Abstract
  • dissipation mechanisms is the behavior of tethered OML under compressive and shear forces, as found in nano-tribology experiments, where external forces can cause conformational changes. Again, a disorder gradient results from the formation of gauche defects which can be reverted when the atomic force
  • excitations collected from a thermal bath. c) The applied bias dependence of activation energies is tentatively related to compression and shear stresses expected for an OML considered as a continuous medium submitted to a compressive force (Figure 1) [49]. Finally, on the basis of the bias dependence of the
  • point" temperature TF should decrease with increasing n-alkane length. OML mechanics: compressive and shear forces In this section, the molecular layer is considered as a continuous medium submitted to a compressive electrostatic pressure, proportional to VI2, where VI is the potential drop across the
PDF
Album
Full Research Paper
Published 26 Feb 2015

Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses

  • Daniel Şopu and
  • Karsten Albe

Beilstein J. Nanotechnol. 2015, 6, 537–545, doi:10.3762/bjnano.6.56

Graphical Abstract
  • from a homogeneous to an inhomogeneous plastic deformation, because the softer interfaces are promoting the formation shear transformation zones. In case of the Cu-rich system, shear localization at the interfaces is most pronounced, since both the topological order and free volume content of the
  • interfaces don’t show topological disorder. Our results provide clear evidence that the mechanical properties of metallic NGs can be systematically tuned by controlling the size and the chemical composition of the glassy nanograins. Keywords: enhanced plasticity; metallic glasses; nanoglasses; shear bands
  • annihilation spectroscopy [9], while molecular dynamics studies showed that glass–glass interfaces exhibit an excess free volume and a modified local order [10][11]. If plastically deformed, the soft glass in the interfaces promotes shear band nucleation similar to the effect of residual shear bands in pre
PDF
Album
Full Research Paper
Published 24 Feb 2015

Filling of carbon nanotubes and nanofibres

  • Reece D. Gately and
  • Marc in het Panhuis

Beilstein J. Nanotechnol. 2015, 6, 508–516, doi:10.3762/bjnano.6.53

Graphical Abstract
  • removal of the encapsulated nanoparticles [95]. Sonication has also been employed to fill MWCNTs in solution. Sonication acted to shear the MWCNT, resulting in the filling of the MWCNT with the surrounding metal solution [96]. Other methods have employed focused electron irradiation to produce SWCNTs
PDF
Album
Review
Published 19 Feb 2015

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • while holding the large-area scanner at a fixed position. The high resolution open-loop scanner is thereby mounted on a large-area scan stage. The high resolution scanner was realized by using a stack of shear actors for x–y scanning and a stack piezo actor with a travel of 5 μm and a resonance
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes

  • Florian G. Strobl,
  • Dominik Breyer,
  • Phillip Link,
  • Adriano A. Torrano,
  • Christoph Bräuchle,
  • Matthias F. Schneider and
  • Achim Wixforth

Beilstein J. Nanotechnol. 2015, 6, 414–419, doi:10.3762/bjnano.6.41

Graphical Abstract
  • uptake of nanoparticles. Here, we present a versatile microfluidic device based on acoustic streaming induced by surface acoustic waves (SAWs). The device offers a convenient method for introducing fluid motion in standard cell culture chambers and for mimicking capillary blood flow. We show that shear
  • physiological flow conditions the particle uptake rates for this system are significantly lower than at low shear conditions. This underlines the vital importance of the fluidic environment for cellular uptake mechanisms. Keywords: acoustic streaming; cellular uptake; flow; nanoparticles; sedimentation; shear
  • Cloc > Cm. Ignoring these effects can in fact lead to misinterpretation of experimental data, especially to an overestimation of the impact of big particles or agglomerates. Furthermore, particles on a cell surface under shear are subject to drag and torsion forces [3]. For spherical particles in the
PDF
Album
Full Research Paper
Published 09 Feb 2015

The fate of a designed protein corona on nanoparticles in vitro and in vivo

  • Denise Bargheer,
  • Julius Nielsen,
  • Gabriella Gébel,
  • Markus Heine,
  • Sunhild C. Salmen,
  • Roland Stauber,
  • Horst Weller,
  • Joerg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 36–46, doi:10.3762/bjnano.6.5

Graphical Abstract
  • of particles <10 nm is more and more balanced by shear forces due to Brownian motion with the consequence of detachment of proteins. The authors explained their finding with a heteroaggregation model in which a low number of SPIOs is stabilized between layers of proteins. In our FPLC study we do not
PDF
Album
Full Research Paper
Published 06 Jan 2015

Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state

  • Florian G. Strobl,
  • Florian Seitz,
  • Christoph Westerhausen,
  • Armin Reller,
  • Adriano A. Torrano,
  • Christoph Bräuchle,
  • Achim Wixforth and
  • Matthias F. Schneider

Beilstein J. Nanotechnol. 2014, 5, 2468–2478, doi:10.3762/bjnano.5.256

Graphical Abstract
  • and the release of cargo from giant vesicles was also the subject of earlier works in our group [35][36]. Due to the non-zero lateral shear resistance of gel-phase membranes, the relaxation time for the healing of defects will be much longer as compared to liquid membranes. Hence, induced pores remain
PDF
Album
Full Research Paper
Published 23 Dec 2014

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • surfaces. Additional capillary bridges between foot and substrate are formed due to the fluid secreted by the beetle and shear adhesion forces are in the same range as in air [43]. Similar results were described for geckos attaching to hydrophilic surfaces underwater and in air while no significant
  • actually the force needed to shear the junctions formed between the surfaces in contact. In contrast, in wet friction a film of water or another liquid is involved. This liquid can originate from humidity in the air or from secretion by the animal. Under such boundary lubrication conditions there is a
PDF
Album
Review
Published 17 Dec 2014

Mechanical properties of sol–gel derived SiO2 nanotubes

  • Boris Polyakov,
  • Mikk Antsov,
  • Sergei Vlassov,
  • Leonid M Dorogin,
  • Mikk Vahtrus,
  • Roberts Zabels,
  • Sven Lange and
  • Rünno Lõhmus

Beilstein J. Nanotechnol. 2014, 5, 1808–1814, doi:10.3762/bjnano.5.191

Graphical Abstract
  • in-plane bending of half-suspended NT. In all experiments the tip oscillated parallel to the surface of the sample (shear mode) and normal to the NTs. The amplitude signal of the QTF (proportional to the applied force) and the sequence of SEM images of the gradually bent NT were recorded
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2014

Non-covalent and reversible functionalization of carbon nanotubes

  • Antonello Di Crescenzo,
  • Valeria Ettorre and
  • Antonella Fontana

Beilstein J. Nanotechnol. 2014, 5, 1675–1690, doi:10.3762/bjnano.5.178

Graphical Abstract
  • provided by magnetic stirring, reflux, shear mixing, or, most commonly, ultrasonication either mild sonication in a bath or high-power sonication using a tip [16]. Once exfoliated, the simplest stable CNTs dispersions have been achieved by using solvent molecules able to efficiently interact with CNTs such
PDF
Album
Review
Published 30 Sep 2014

Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

  • Adriano A. Torrano and
  • Christoph Bräuchle

Beilstein J. Nanotechnol. 2014, 5, 1616–1624, doi:10.3762/bjnano.5.173

Graphical Abstract
  • nanoparticles. The flow is generated by a novel microfluidic reactor that can be combined with live-cell imaging and is able to cover the entire physiological range of shear rates [31]. Comparison to other methods Customary techniques performed for achieving the dosage of particles taken up by cells include
PDF
Album
Full Research Paper
Published 23 Sep 2014

On the structure of grain/interphase boundaries and interfaces

  • K. Anantha Padmanabhan and
  • Herbert Gleiter

Beilstein J. Nanotechnol. 2014, 5, 1603–1615, doi:10.3762/bjnano.5.172

Graphical Abstract
  • about two and a half atomic diameters (average grain boundary width [58]) in the perpendicular direction. (A deformation of oblate spheroids of such dimensions along the interface between glassy regions in case of metallic glasses would lead to the formation of shear transformation zones, described by
  • Argon [59] and others.) As mentioned above, the basic units of boundary/interface sliding are defined around free volume sites, which are present at discrete places characteristic of the interatomic forces and the boundary misorientation. The sequential shear of such oblate spheroids, when it reaches
  • summarized in [53][54][55][56][57][60][61][62]. The shear modulus and the free volume present in the basic sliding unit, γ0, (composition, impurity/solute/dopant content dependent) can be determined by using ab initio calculations, in particular the tight binding model, which is computationally less
PDF
Album
Review
Published 22 Sep 2014

Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure

  • Alicja Panas,
  • Andreas Comouth,
  • Harald Saathoff,
  • Thomas Leisner,
  • Marco Al-Rawi,
  • Michael Simon,
  • Gunnar Seemann,
  • Olaf Dössel,
  • Sonja Mülhopt,
  • Hanns-Rudolf Paur,
  • Susanne Fritsch-Decker,
  • Carsten Weiss and
  • Silvia Diabaté

Beilstein J. Nanotechnol. 2014, 5, 1590–1602, doi:10.3762/bjnano.5.171

Graphical Abstract
  • , the importance of shear forces to exacerbate NP-induced toxicity has been described previously [8][33]. Another explanation could also be the secretion of surfactant by A549 cells under ALI conditions [34] which may have a protective effect due to binding of surfactant proteins to the particles [35
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2014

Surface topography and contact mechanics of dry and wet human skin

  • Alexander E. Kovalev,
  • Kirstin Dening,
  • Bo N. J. Persson and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1341–1348, doi:10.3762/bjnano.5.147

Graphical Abstract
  • skin. The measured friction coefficient between a glass ball and dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 13 MPa and σf ≈ 5 MPa, respectively, act in the area of real contact during sliding. These frictional shear stresses are typical for sliding on surfaces of
  • type shown in Figure 6 it is given by , where and [14][15][16] where where G0 = E0/2(1+ν0) and G1 = E1/2(1+ν1) are the shear moduli for solid 0 and solid 1, respectively. In all the calculations presented below we have assumed a squeezing pressure FN/A0 = p0 = 6.83 kPa, which is the average nominal
  • /A0 = σN/σY = 1.37 × 10−4. Plastic deformation starts at q ≥ 105 m−1 corresponding to a wavelength of λ ≤ 2π/q ≈ 60 μm. The values of the friction coefficients, μ ≈ 0.25 for dry skin and μ ≈ 1.4 for wet skin, could be explained by frictional shear stresses of about 13 MPa for the dry surface and of
PDF
Album
Full Research Paper
Published 22 Aug 2014
Other Beilstein-Institut Open Science Activities