Search results

Search for "vapor deposition" in Full Text gives 282 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The effect of atmospheric doping on pressure-dependent Raman scattering in supported graphene

  • Egor A. Kolesov,
  • Mikhail S. Tivanov,
  • Olga V. Korolik,
  • Olesya O. Kapitanova,
  • Xiao Fu,
  • Hak Dong Cho,
  • Tae Won Kang and
  • Gennady N Panin

Beilstein J. Nanotechnol. 2018, 9, 704–710, doi:10.3762/bjnano.9.65

Graphical Abstract
  • , graphene functionalization techniques, and taking into account adsorption effects during nanoelectronic device engineering. Experimental Graphene was synthesized on Cu foil at 1020 °C by a chemical vapor deposition (CVD) method using a mixture of CH4 of 40 sccm and H2 of 10 sccm. Cu foil (Alfa Aesar
PDF
Album
Full Research Paper
Published 22 Feb 2018

Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene

  • Maryam Barzegar,
  • Masoud Berahman and
  • Azam Iraji zad

Beilstein J. Nanotechnol. 2018, 9, 608–615, doi:10.3762/bjnano.9.57

Graphical Abstract
  • methods have been applied to synthesize single or few-layered MoS2, including but not limited to mechanical cleavage, chemical exfoliation, hydrothermal synthesis and chemical vapor deposition [16][17][18][19][20][21][22][23]. The hydrothermal process is a scalable method to synthesize MoS2 nanosheets and
PDF
Album
Full Research Paper
Published 16 Feb 2018

Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy

  • Sujit Kumar Dora,
  • Kerstin Koch,
  • Wilhelm Barthlott and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2018, 9, 468–481, doi:10.3762/bjnano.9.45

Graphical Abstract
  • dissolving liquid, when wax molecules were deposited by vapor deposition onto an HOPG surface, tubules were rarely formed when the substrate was held at 25 °C; only at temperatures 25 °C < T < 50 °C was tubule growth observed. In turn, since all experiments in the present work were done at fixed temperature
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2018

Engineering of oriented carbon nanotubes in composite materials

  • Razieh Beigmoradi,
  • Abdolreza Samimi and
  • Davod Mohebbi-Kalhori

Beilstein J. Nanotechnol. 2018, 9, 415–435, doi:10.3762/bjnano.9.41

Graphical Abstract
  • arrangement of CNTs and sorting of nanofibers are done at the same time, as shown in Figure 9 [70]. Recently, direct spinning to a vertical chemical vapor deposition (CVD) synthesis zone has also been studied and is under development to produce CNT fibers and ribbons [44][71]. In a vertical CVD reactor, the
  • of a wide range of materials, spraying can be combined with other methods to fabricate composite materials. In this method, a sheet of CNTs is produced by chemical vapor deposition (CVD) on a SiO2/Si substrate that is coated with a very thin layer of iron as a catalyst. The CNT rows have been grown
PDF
Album
Review
Published 05 Feb 2018

Electron interaction with copper(II) carboxylate compounds

  • Michal Lacko,
  • Peter Papp,
  • Iwona B. Szymańska,
  • Edward Szłyk and
  • Štefan Matejčík

Beilstein J. Nanotechnol. 2018, 9, 384–398, doi:10.3762/bjnano.9.38

Graphical Abstract
  • remains and forms the layer. Activation of the precursor molecules can be induced by several processes. For instance, a catalytic or a thermal dissociation can occur. Plasma activated processes such as plasma enhanced chemical vapor deposition (PECVD) can be used for coating of the surface [1]. In the
  • = CnF2n+1, n = 1–6) were previously applied as Cu CVD precursors [34][38] for the formation of copper nanomaterials. This fact confirms that copper(II) carboxylate compounds can be considered as copper sources in vapor deposition processes. The influence of secondary ligands on the physicochemical
PDF
Album
Full Research Paper
Published 01 Feb 2018

Gas-assisted silver deposition with a focused electron beam

  • Luisa Berger,
  • Katarzyna Madajska,
  • Iwona B. Szymanska,
  • Katja Höflich,
  • Mikhail N. Polyakov,
  • Jakub Jurczyk,
  • Carlos Guerra-Nuñez and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 224–232, doi:10.3762/bjnano.9.24

Graphical Abstract
  • (AgO2CC2F5), for silver FEBID based on reported successful chemical vapor deposition (CVD) experiments yielding silver films at moderate temperatures of around ≤200 °C [16]. This carboxylate compound showed to be susceptible to electron-induced dissociation, but it requires thermal conditions outside the
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2018

Dopant-stimulated growth of GaN nanotube-like nanostructures on Si(111) by molecular beam epitaxy

  • Alexey D. Bolshakov,
  • Alexey M. Mozharov,
  • Georgiy A. Sapunov,
  • Igor V. Shtrom,
  • Nickolay V. Sibirev,
  • Vladimir V. Fedorov,
  • Evgeniy V. Ubyivovk,
  • Maria Tchernycheva,
  • George E. Cirlin and
  • Ivan S. Mukhin

Beilstein J. Nanotechnol. 2018, 9, 146–154, doi:10.3762/bjnano.9.17

Graphical Abstract
  • offer a new degree of freedom due to possible confinement effects. It has been previously demonstrated that GaN NTs may be synthesized using the following methods: 1) chemical vapor deposition of nitrogen precursor with gallium precursor in the presence of catalysts such as Ni, In or Au [11][12][13]; 2
PDF
Album
Full Research Paper
Published 15 Jan 2018

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • -patterned wafer on which they where localized and contacted by e-beam lithography. The InAs NWs studied were grown in a metal-organic vapor deposition (MOCVD) system by vapor–liquid–solid (VLS) growth using a gold particle as catalyst and using trimethylindium (TMIn) and tert-butylarsine (TBA) as precursors
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Atomic layer deposition and properties of ZrO2/Fe2O3 thin films

  • Kristjan Kalam,
  • Helina Seemen,
  • Peeter Ritslaid,
  • Mihkel Rähn,
  • Aile Tamm,
  • Kaupo Kukli,
  • Aarne Kasikov,
  • Joosep Link,
  • Raivo Stern,
  • Salvador Dueñas,
  • Helena Castán and
  • Héctor García

Beilstein J. Nanotechnol. 2018, 9, 119–128, doi:10.3762/bjnano.9.14

Graphical Abstract
  • terms of the chemical composition. Altogether, 220–235 ALD cycles were deposited to obtain each thin film. The films were grown on various substrates: Si(100) and highly doped conductive Si substrates covered by a 10 nm TiN film grown by chemical vapor deposition. Before deposition, the Si(100) was
  • , the separation is not perfect during the actual operation. The adsorption waves may partially overlap and meet in the vicinity of the substrate surface, causing the chemical vapor deposition to be less controlled. At the leading edge, the film thickness is usually higher and gradually decreases
PDF
Album
Full Research Paper
Published 10 Jan 2018

Response under low-energy electron irradiation of a thin film of a potential copper precursor for focused electron beam induced deposition (FEBID)

  • Leo Sala,
  • Iwona B. Szymańska,
  • Céline Dablemont,
  • Anne Lafosse and
  • Lionel Amiaud

Beilstein J. Nanotechnol. 2018, 9, 57–65, doi:10.3762/bjnano.9.8

Graphical Abstract
  • , Poland, for chemical vapor deposition (CVD) [6][7][8]. Among these complexes, two different compounds, [Cu2(EtNH2)2(μ-O2CC3F7)4] and [Cu2(EtNH2)2(μ-O2CC2F5)4] (Figure 1) will be studied in the present paper and hereafter named as compound A and compound B, respectively. They differ only by the length of
PDF
Album
Full Research Paper
Published 05 Jan 2018

Electro-optical characteristics of a liquid crystal cell with graphene electrodes

  • Nune H. Hakobyan,
  • Hakob L. Margaryan,
  • Valeri K. Abrahamyan,
  • Vladimir M. Aroutiounian,
  • Arpi S. Dilanchian Gharghani,
  • Amalya B. Kostanyan,
  • Timothy D. Wilkinson and
  • Nelson Tabirian

Beilstein J. Nanotechnol. 2017, 8, 2802–2806, doi:10.3762/bjnano.8.279

Graphical Abstract
  • . Results and Discussion Synthesis of graphene films The graphene was obtained by a chemical vapor deposition (CVD) process. Details of synthesis and extensive characterization of the CVD graphene can be found in prior works [13][14]. The monolayer graphene film was then transferred from the Cu foil to a
PDF
Album
Full Research Paper
Published 28 Dec 2017

The rational design of a Au(I) precursor for focused electron beam induced deposition

  • Ali Marashdeh,
  • Thiadrik Tiesma,
  • Niels J. C. van Velzen,
  • Sjoerd Harder,
  • Remco W. A. Havenith,
  • Jeff T. M. De Hosson and
  • Willem F. van Dorp

Beilstein J. Nanotechnol. 2017, 8, 2753–2765, doi:10.3762/bjnano.8.274

Graphical Abstract
  • , but non-volatile [12]. MeAuPMe3 has been used for chemical vapor deposition (CVD) [51][52] and can be used for FEBIP. However, the electron-induced dissociation is incomplete, with just a single methyl ligand being removed [12]. The studies of Au(I) compounds that have been made so far have raised
  • -volatile. ClAuPMe3 and ClAuPEt3 are hence not useful as FEBIP precursor. However, replacing the Cl ligand with a Me ligand improves the volatility. MeAuPMe3 is chemically stable enough to act as a precursor for FEBIP (and chemical vapor deposition) and crystallizes with six molecules in an asymmetric unit
PDF
Album
Full Research Paper
Published 20 Dec 2017

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • . used chemical vapor deposition to associate CdS, CdSe or CdSeS rods to TiO2 NRs arrays and demonstrated that the CdSeS/TiO2 heterostructure exhibits the highest performances as photoelectrode [39]. More recently, small CdSe NRs [40] or type II CdSe/CdSexTe1−x NRs [41] were also used as light harvesters
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

Dry adhesives from carbon nanofibers grown in an open ethanol flame

  • Christian Lutz,
  • Julia Syurik,
  • C. N. Shyam Kumar,
  • Christian Kübel,
  • Michael Bruns and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 2719–2728, doi:10.3762/bjnano.8.271

Graphical Abstract
  • in a closed chamber. The standard process for their growth is chemical vapor deposition (CVD) [3], which results in randomly oriented structures, whereas a plasma-enhanced CVD (PECVD) [4] allows for the growth of aligned structures. During growth of 1D-CNs, oxidized catalytic centers reduce into
PDF
Album
Full Research Paper
Published 15 Dec 2017

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • , 630090 Novosibirsk, Russia, Institute of Coal Chemistry and Materials Science FRC CCC SB RAS, Kemerovo 650000, Russia 10.3762/bjnano.8.267 Abstract Novel nitrogen-doped carbon hybrid materials consisting of multiwalled nanotubes and porous graphitic layers have been produced by chemical vapor deposition
  • prepared hybrid materials [6][7][8][9]. Another less common strategy consists of CNT growth by catalytic chemical vapor deposition (CCVD) over catalyst nanoparticles predeposited on the graphitic surfaces [10][11][12][13]. The obtained hybrids are characterized by tight bonding between the components
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Synthesis of [{AgO2CCH2OMe(PPh3)}n] and theoretical study of its use in focused electron beam induced deposition

  • Jelena Tamuliene,
  • Julian Noll,
  • Peter Frenzel,
  • Tobias Rüffer,
  • Alexander Jakob,
  • Bernhard Walfort and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 2615–2624, doi:10.3762/bjnano.8.262

Graphical Abstract
  • beam induced deposition (FEBID) is a cost efficient direct resist-free chemical vapor deposition technique producing free-standing 3D metal-containing nanoscale structures in a single step on, for example, surfaces of sub-10 nm size using a variety of materials with a high degree of spatial and time
  • -domain control [1][2][3]. Up to now, FEBID relies on the chemical availability of chemical vapor deposition (CVD) precursors. However, such precursors are not optimized for the electron-driven FEBID process and hence molecular precursors particularly adapted to its underlying electron-induced
  • -bonded PPh3 group could be detected under the measurement conditions applied (Experimental, Figure 5). To show, if 2 is a suitable FEBID or chemical vapor deposition (CVD) precursor for the deposition of silver, vapor pressure measurements of 2 were undertaken (Figure 6). In order to determine the
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2017

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • morphology, for example, as individual nanotubes or as CNT forests. Electron beam induced deposition (EBID) with subsequent autocatalytic growth (AG) was applied to lithographically produce catalytically active seeds for the localized growth of CNTs via chemical vapor deposition (CVD). With the precursor Fe
  • storage [1][2][3][4]. The most common synthesis method for CNTs is chemical vapor deposition (CVD) [5][6][7][8], in which statistically distributed, metal-containing particles act as catalysts for CNT growth. Thereby, not only does the random position of the catalyst particles determine the position of
  • (300:30:30 sccm). (d) Auger electron spectrum of the indicated Fe deposit. SEM micrographs of Fe EBID deposits before and after the chemical vapor deposition (CVD) experiment (1163 K, N2:H2:C2H4 300:30:30 sccm). Fe deposits fabricated with (a) 0.25 nC, (b) 0.5 nC, (c) 1.2 nC electron dose per point. (d
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol

  • Yifan Li,
  • Yunlu Pan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2017, 8, 2504–2514, doi:10.3762/bjnano.8.250

Graphical Abstract
  • function layer (thickness ca. 20 nm) by chemical vapor deposition (CVD), one drop (about 0.1 mL) of methyltrichlorosilane (methylsilane, Sigma Aldrich) was placed next to the samples under sealing and left for 10 h. To prepare the superoleophobic surface, the same materials and processes as for
PDF
Album
Full Research Paper
Published 27 Nov 2017

Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry

  • Rumen G. Nikov,
  • Anna Og. Dikovska,
  • Nikolay N. Nedyalkov,
  • Georgi V. Avdeev and
  • Petar A. Atanasov

Beilstein J. Nanotechnol. 2017, 8, 2438–2445, doi:10.3762/bjnano.8.242

Graphical Abstract
  • their fabrication. Such applications require contamination-free nanostructures, suggesting that the development and use of physical nanofabrication methods is further warranted. One of the physical vapor deposition techniques widely applied in bottom-up nanotechnology is pulsed laser deposition (PLD
PDF
Album
Full Research Paper
Published 17 Nov 2017

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • nanostructures have also been used as masks. The patterns of 1D DNA nanotubes and 2D DNA arrays were replicated to metal films by metal evaporation onto the DNA nanostructures and subsequent lift-off of the metal films [31]. Aligned DNA molecular bundles became shadow masks for angled metal vapor deposition and
  • the exposed substrate through shadow gaps was etched to generate trenches with linewidths of sub-10 nm resolution [32]. By differentiating the adsorption of water between DNA nanostructures and a SiO2 substrate, the rates of HF vapor-phase etching of the SiO2 substrate [33] and of chemical vapor
  • deposition of SiO2 and TiO2 on the DNA nanostructures and the substrate [34] were modulated to replicate the patterns of the DNA nanostructures into those of the inorganic oxides. In both cases, the patterns of the nanostructures were transferred in both positive tone and negative tone at room temperature
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Expanding the molecular-ruler process through vapor deposition of hexadecanethiol

  • Alexandra M. Patron,
  • Timothy S. Hooker,
  • Daniel F. Santavicca,
  • Corey P. Causey and
  • Thomas J. Mullen

Beilstein J. Nanotechnol. 2017, 8, 2339–2344, doi:10.3762/bjnano.8.233

Graphical Abstract
  • variations in the surface morphology of the Cu-ligated MHDA-C16 bilayers, it seems that the solution deposition of C16 is not suitable for use in the molecular-ruler process, and specifically for producing nanogaps with reproducible uniformity. To overcome this limitation, the vapor deposition of C16 is
  • images of a Cu-ligated MHDA-C16 bilayer formed from the solution deposition of MHDA for 18 h and Cu(ClO4)2·6H2O for 5 min followed by vapor deposition of C16 for 1 h at 80 °C. Figure 3C displays a representative cursor profile across several islands as indicated by the red line in Figure 3B. The apparent
  • -ligated MHDA decalayers from previous studies [28]. Figure 4B shows an SEM image of the resulting nanogaps from ten iterations of the solution deposition of MHDA and Cu(ClO4)2·6H2O followed by the vapor deposition of C16 at 80 °C for 1 h. Similar higher and lower intensity regions are observed and
PDF
Album
Supp Info
Letter
Published 07 Nov 2017

Changes of the absorption cross section of Si nanocrystals with temperature and distance

  • Michael Greben,
  • Petro Khoroshyy,
  • Sebastian Gutsch,
  • Daniel Hiller,
  • Margit Zacharias and
  • Jan Valenta

Beilstein J. Nanotechnol. 2017, 8, 2315–2323, doi:10.3762/bjnano.8.231

Graphical Abstract
  • of silicon-rich silicon oxynitride (SRON: SiOxNy) with 4.5 nm thickness and of stoichiometric SiO2 (1, 1.6, 2.2 or 2.8 nm thick) on fused silica substrates by plasma-enhanced chemical vapor deposition (PECVD). On top and below the superlattice stack, 10 nm of SiO2 were deposited as a buffer and
PDF
Album
Full Research Paper
Published 06 Nov 2017

Dissociative electron attachment to coordination complexes of chromium: chromium(0) hexacarbonyl and benzene-chromium(0) tricarbonyl

  • Janina Kopyra,
  • Paulina Maciejewska and
  • Jelena Maljković

Beilstein J. Nanotechnol. 2017, 8, 2257–2263, doi:10.3762/bjnano.8.225

Graphical Abstract
  • [1][2][3]. However, they also play an important role in nanotechnology. In fact, a number of organometallic complexes, originally designed for chemical vapor deposition (CVD) purposes, have also been recognized as promising precursors for focused electron beam induced deposition (FEBID), a process to
PDF
Full Research Paper
Published 30 Oct 2017

Vapor-based polymers: from films to nanostructures

  • Meike Koenig and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2017, 8, 2219–2220, doi:10.3762/bjnano.8.221

Graphical Abstract
  • poly(p-xylylenes) via the Gorham process, has been of industrial use in the fabrication of isolating or protective coatings in electronics and biomaterials for many years [1][2]. More recently, vapor deposition polymerization has been extended to a broad variety of reactive polymers [3], additionally
  • using techniques such as plasma-, initiated-, or oxidative chemical vapor deposition polymerization [4][5]. The reason for the ongoing interest in this research field is that, analogue to the deposition of inorganic coatings by chemical vapor deposition, the deposition of polymer coatings from the vapor
  • deposition, is used as a top layer above an electro-deposited silver coating, ensuring the prolonged release of antibacterial silver ions. Another advantage of vapor deposition techniques is the potential of synthesizing copolymers of chemically or functionally distinct monomers [12]. Alternatively, vapor
PDF
Editorial
Published 24 Oct 2017

A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

  • Peter Krauß,
  • Jörg Engstler and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 2017–2025, doi:10.3762/bjnano.8.202

Graphical Abstract
  • Peter Krauss Jorg Engstler Jorg J. Schneider Fachbereich Chemie, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss Str. 12, 64287 Darmstadt, Germany 10.3762/bjnano.8.202 Abstract Chemical vapor deposition (CVD) of carbon precursors
  • on graphene are active in the catalytic growth of carbon nanotubes when employing a water-assisted CVD process. Keywords: carbon nanotubes; chemical vapor deposition; graphene; iron oxide; nanoparticles; Introduction Graphene was first described by Boehm and coworkers in the early 1960s [1][2][3][4
  • -down and bottom-up approaches to synthesize and isolate graphene, each having their own advantages and disadvantages [5][6][7][8][9][10][11][12]. The most common route to synthesize continuous, large-area graphene is chemical vapor deposition (CVD) using a carbon precursor on a planar metal catalyst
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2017
Other Beilstein-Institut Open Science Activities