Search results

Search for "dynamic" in Full Text gives 723 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • of atomic force microscopy (AFM) is the measurement of physical properties at sub-micrometer resolution. Methods such as force–distance curves (FDCs) or dynamic variants (such as intermodulation AFM (ImAFM)) are able to measure mechanical properties (such as the local stiffness, kr) of nanoscopic
  • –distance curve (FDC) method is the most fundamental force spectroscopy experimental setup which yields local mechanical properties with a lateral resolution between 500 nm and 1 µm [1][2][3]. Recent developments have aimed to increase the lateral resolution of force spectroscopy by implementing dynamic
  • methods. This has resulted in methods such as force modulation [4], bimodal mode [5], pulsed-force mode [6] or peak force [7], and intermodulation AFM (ImAFM) with amplitude-dependent force spectroscopy (ADFS) [8][9][10]. Dynamic methods record local mechanical properties with a resolution in the range of
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • -aminopropyltrimethoxysilane (AHAPS), which provides the nanoparticle surface with a positive charge, increasing their interaction with the cell membrane. The particles were characterized by scanning transmission electron microscopy (STEM), dynamic light scattering (DLS), electrophoretic light scattering (ELS), and
  • UCNPs, was dried on a carbon-coated copper grid (Cu 400 mesh, Quantifoil®: 100 carbon support films). The images were analyzed using the software FIJI. At least 300 particles per sample were analyzed. Dynamic light scattering and electrophoretic light scattering The DLS and ELS measurements were
  • , XRD data, STEM images, ICP-OES, and cell cycle data. Acknowledgements We thank I. Pieper from the research group of Prof. Dr. Martin Kaupenjohann (Technische Universität Berlin) for the ICP-OES measurements, Prof. Dr. R. Haag (Freie Universität Berlin) for providing access to the dynamic light
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • , and self-pealing from a substrate [4]. Negative dynamic compressibility occurs in several 2D materials due to the dynamical wrinkling of layers [8]. Also, 2D materials folded in 3D origami-like structures [7][9][10] can, in principle, exhibit a tunable negative thermal expansion coefficient [11]. In
  • understanding of the structural/dynamic response of multilayered 2D materials upon bending is also an essential issue regarding technological applications, such as deformable electronics, flexible reinforcements for brittle biomedical implants [15], and ultralight resonators suited as transducers of extremely
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Mapping of integrated PIN diodes with a 3D architecture by scanning microwave impedance microscopy and dynamic spectroscopy

  • Rosine Coq Germanicus,
  • Peter De Wolf,
  • Florent Lallemand,
  • Catherine Bunel,
  • Serge Bardy,
  • Hugues Murray and
  • Ulrike Lüders

Beilstein J. Nanotechnol. 2020, 11, 1764–1775, doi:10.3762/bjnano.11.159

Graphical Abstract
  • complete parametric investigation, is performed with a dynamic spectroscopy method. The results emphasize the strong impact, in terms of distinction and location, of the applied bias on the local sMIM measurements for both FEOL and BEOL layers. Keywords: atomic force microscopy (AFM); DataCube; doping
  • back contact, is recorded using a logarithmic amplifier with a wide dynamic range [9][10]. Based on the measured current, the overall equivalent resistance, including the conductive tip resistance, the spreading resistance of the semiconductor under the contact, the bulk resistance of the sample, and
  • . In addition, a high-resolution dynamic parametric study based on the acquisition of sMIM signals as a function of the applied VDC bias, at each pixel, is carried out. Experimental sMIM Measurements Based on AFM, the sMIM mode is a microwave mode in which an incident microwave signal travels through
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2020

PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: synthesis, characterization, and in vitro evaluation

  • Shuoye Yang,
  • Zhenwei Wang,
  • Yahong Ping,
  • Yuying Miao,
  • Yongmei Xiao,
  • Lingbo Qu,
  • Lu Zhang,
  • Yuansen Hu and
  • Jinshui Wang

Beilstein J. Nanotechnol. 2020, 11, 1728–1741, doi:10.3762/bjnano.11.155

Graphical Abstract
  • -COOH sample is distinctly smaller than that of the raw SWCNTs, and the sample treated with H2SO4/HNO3 mixed acid solution has the most even size distribution. The particle size of CNTs modified by PEG and PEI increases slightly. It should be noted that dynamic light scattering (DLS) is mainly suitable
PDF
Album
Full Research Paper
Published 13 Nov 2020

Application of contact-resonance AFM methods to polymer samples

  • Sebastian Friedrich and
  • Brunero Cappella

Beilstein J. Nanotechnol. 2020, 11, 1714–1727, doi:10.3762/bjnano.11.154

Graphical Abstract
  • analysis, it is concluded that CR measurements are not appropriate for polymer samples. Major drawbacks are the bad resolution for moduli lower than ca. 10 GPa and the lack of a comprehensive physical model accounting for many factors affecting the dynamic response of a cantilever in contact with a sample
  • curves in well-defined spatial intervals, can take several hours to complete. In order to overcome these drawbacks, dynamic scanning methods are a promising alternative to force–distance curves. For example, intermittent-contact (or tapping) mode AFM shows sensitivity to mechanical properties in the
  • phase image. The resulting contrast is, however, hard to analyze quantitatively. Contact-resonance AFM (CR-AFM) [4][5] is a dynamic contact technique that makes use of the vibrational behavior of the cantilever while the tip is in permanent contact with the sample. Generally, an increase in sample
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2020

Selective detection of complex gas mixtures using point contacts: concept, method and tools

  • Alexander P. Pospelov,
  • Victor I. Belan,
  • Dmytro O. Harbuz,
  • Volodymyr L. Vakula,
  • Lyudmila V. Kamarchuk,
  • Yuliya V. Volkova and
  • Gennadii V. Kamarchuk

Beilstein J. Nanotechnol. 2020, 11, 1631–1643, doi:10.3762/bjnano.11.146

Graphical Abstract
  • methods based on the concept of marker identification. However, this approach has a significant drawback since the processes happening in complex gaseous media are highly dynamic. Therefore, it negatively impacts the efficacy of medical diagnosis. In the breath, there is a high possibility of interactions
  • reports made based on the analysis from data sets taken during a long measurement period are being contested. Therefore, performing express tests using point-contact nanosensors for the observation of hormone concentration profiles in a dynamic manner is of undeniable importance. The present study
PDF
Album
Full Research Paper
Published 28 Oct 2020

A self-powered, flexible ultra-thin Si/ZnO nanowire photodetector as full-spectrum optical sensor and pyroelectric nanogenerator

  • Liang Chen,
  • Jianqi Dong,
  • Miao He and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1623–1630, doi:10.3762/bjnano.11.145

Graphical Abstract
  • significantly improved by reducing the thickness of Si [21]. In order to investigate the performance of self-powered PDs, a dynamic response curve I–t was measured under periodic 325 nm ultraviolet (UV) illumination and zero bias (Figure 1c). The photoresponsivity is calculated by Equation 1 [21]: where ipy
  • -cycle dynamic response curve extracted from Figure 1c is shown in Figure 1d, indicating that the PD possesses a fast response speed (rising time τr = 18 μs, falling time τf = 25 μs). It is obvious that the p-Si/n-ZnO NWs heterojunction PDs exhibit excellent detection capability and work well without an
  • was operated at 325, 442, 532, 635, 808, and 1064 nm as an excitation source. The dynamic characteristic curves I–t of a PD under zero bias and at different laser wavelengths are shown in Figure 4. It is obvious that there are large short-circuit currents at all wavelengths, indicating that the self
PDF
Album
Full Research Paper
Published 27 Oct 2020

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • . STM images of PTCDA molecules on (a) Si(111)-(7 × 7), (b) partly CaF1-covered Si(111), and (c) CaF2/CaF1/Si(111) surface areas. Imaging parameters: (a) dynamic STM, Ub = 3.0 V, It = 50 pA; (b) STM, Ub = −3.0 V, It = 50 pA; (c) Ub = −3.0 V, It = 50 pA. STM images of individual PTCDA molecules on
PDF
Album
Full Research Paper
Published 26 Oct 2020

Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators

  • Mingliang Yao,
  • Guangzhong Xie,
  • Qichen Gong and
  • Yuanjie Su

Beilstein J. Nanotechnol. 2020, 11, 1590–1595, doi:10.3762/bjnano.11.141

Graphical Abstract
  • Figure 3f), which indicates the robustness and repeatability of the prepared device. To verify the capacity of harvesting human walking energy, the as-fabricated u-TENG was mounted as a floorboard to collect the mechanical energy from footsteps. The real-time dynamic signal profile of the output voltage
PDF
Album
Full Research Paper
Published 20 Oct 2020

Electrokinetic characterization of synthetic protein nanoparticles

  • Daniel F. Quevedo,
  • Cody J. Lentz,
  • Adriana Coll de Peña,
  • Yazmin Hernandez,
  • Nahal Habibi,
  • Rikako Miki,
  • Joerg Lahann and
  • Blanca H. Lapizco-Encinas

Beilstein J. Nanotechnol. 2020, 11, 1556–1567, doi:10.3762/bjnano.11.138

Graphical Abstract
  • driven processes are suitable for a wide range of applications due to their simplicity and robustness. An applied electric potential can be used to manipulate a biological particle and its surrounding liquid, since the electroosmotic (EO) flow can allow for an “on the fly” dynamic flow redirection within
  • diameter of 299 ± 128 nm (Figure 1b). The particles were subsequently collected and suspended in media. After allowing the particles to equilibrate for 24 h, the average particle diameter value increased to 356 ± 190 nm according to dynamic light scattering (DLS) measurements. The size distribution curves
  • the desired particles. Particles, in their dry state, were imaged using SEM for shape analysis. To determine their hydrodynamic size distribution after being hydrated, the particles were suspended in ultrapure H2O + 0.01% Tween 20, sonicated on ice, and measured with dynamic light scattering (Malvern
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2020

Design of V-shaped cantilevers for enhanced multifrequency AFM measurements

  • Mehrnoosh Damircheli and
  • Babak Eslami

Beilstein J. Nanotechnol. 2020, 11, 1525–1541, doi:10.3762/bjnano.11.135

Graphical Abstract
  • no studies on the static and dynamic behavior of V-shaped cantilevers in multifrequency AFM due to their complex geometry. In this work, the static and dynamic properties of V-shaped cantilevers are studied while investigating their performance in multifrequency AFM (specifically bimodal AFM). By
  • modeling the cantilevers based on Timoshenko beam theory, the geometrical dimensions such as length, base width, leg width and thickness are studied. By finding the static properties (mass, spring constants) and dynamic properties (resonance frequencies and quality factors) for different geometrical
  • introduced other models to calculate spring constants [22][23]. These methods were improved by Sader to a higher accuracy [11][24]. As a second category of application of V-shaped cantilevers, dynamic AFM is used to characterize soft matter. For example, Korayem et al. have carried out a free-vibration
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • this technique, the experimental conditions must be carefully controlled in order to achieve reproducible results [147]. This technique is usually combined with the dynamic contact methodology (ASTM E2149-10 directive) in which different NP concentrations are put into contact for a given time period
PDF
Album
Review
Published 25 Sep 2020

On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 1409–1418, doi:10.3762/bjnano.11.125

Graphical Abstract
  • characterization frequency regardless of the materials properties. In this paper we present a linear viscoelastic analysis of intermittent-contact, nearly resonant dynamic AFM characterization of such materials, considering the possibility of multiple characteristic times. We describe some of the intricacies
  • inverting the frequency-dependent viscoelastic behavior of a material from dynamic AFM observables, we suggest that a partial solution is offered by recently developed quasi-static force–distance characterization techniques, which incorporate viscoelastic models with multiple characteristic times and can
  • help inform dynamic AFM characterization. Keywords: dynamic atomic force microscopy; Generalized Maxwell model; loss modulus; storage modulus; viscoelasticity; Introduction There have been significant methodology developments since the introduction of atomic force microscopy (AFM) in the mid-1980s [1
PDF
Album
Full Research Paper
Published 15 Sep 2020

Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing

  • Liangyi Zhang,
  • Huan Li,
  • Yiyuan Xie,
  • Jing Guo and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2020, 11, 1394–1401, doi:10.3762/bjnano.11.123

Graphical Abstract
  • -TENG were performed in Chongqing, located in the southern region of China where it rains often and the annual relative humidity is usually above 40%. Thus, the humidity sensor response is limited due to a change in RH from 40 to 90% (Figure 4a–f). The dynamic change between the output voltage and the
PDF
Album
Full Research Paper
Published 11 Sep 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • not prevent the formation of a glutamate biocoating. It was shown that the glutamate biocoating is a temporal dynamic structure at the surface of γ-Fe2O3 nanoparticles. Also, components of the nerve terminal incubation medium and physiological fluids responsible for the desorption of glutamate were
  • diameter Di. The dispersity (Ð) is expressed by the ratio Dw/Dn, where Dw is the weight-average particle diameter, Dw = ΣNiDi4/ΣNiDi3. The hydrodynamic diameter Dh (z-average) and polydispersity index (PI) as measures of the distribution width were obtained by dynamic light scattering (DLS) with a
  • concentrations was considered as 100% in further calculations. Analysis of the size of γ-Fe2O3 nanoparticles in different media by laser correlation spectroscopy The size of γ-Fe2O3 nanoparticles was measured by dynamic light scattering using a laser correlation spectrometer ZetaSizer-3 (Malvern Instrument, UK
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • configurable dynamic range of the element increases with the difference between the kinetic inductances of the arms and decreases with the rise of the geometric inductance. Taking into account more complex physical phenomena in the S/F multilayer structure, the future studies aim to increase the functionality
PDF
Album
Full Research Paper
Published 07 Sep 2020

Cryogenic low-noise amplifiers for measurements with superconducting detectors

  • Ilya L. Novikov,
  • Boris I. Ivanov,
  • Dmitri V. Ponomarev and
  • Aleksey G. Vostretsov

Beilstein J. Nanotechnol. 2020, 11, 1316–1320, doi:10.3762/bjnano.11.115

Graphical Abstract
  • terminals were set up as feedthrough filters. Results and Discussion The main measurement instrument of the setup was a dynamic signal analyzer (SA) SR780 from Stanford Research Systems with a frequency range from DC to 102.4 kHz and imbedded analogue sweeping generator. It was used for gain and noise
  • generator output in order to reduce the voltage amplitude, so that the input voltage signal applied to the amplifiers corresponded to 100 μV. We estimated the dynamic behavior of the amplifiers while applying a sinusoidal analog signal with different amplitudes. The linear voltage range corresponded up to 5
PDF
Album
Full Research Paper
Published 02 Sep 2020

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • self-assembly of BA-OC14 atop the n-C50 buffer layer lead to the formation of another polymorph? (3) Does the assembly atop such buffer layers provide better control over our ability to monitor/manipulate dynamic assembly processes? The results and discussion provided below delve into some of these
  • nm by carrying out systematic concentration-dependent measurements since lower solution concentrations are known to favor large domain sizes. Annealing of the samples was also carried out. We noticed that at lower solution concentrations, the n-C50 monolayers exhibit a highly dynamic behavior with
  • possible for monolayers adsorbed directly on the graphite surface. In the following section we describe our attempts to observe such dynamic phenomena and to induce nucleation of BA-OC14 domains using the STM tip. STM tip-induced nucleation on-command atop n-C50 buffer layer During the course of this
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • electrochemical behavior [49]. EIS is one of the most accurate methods to analyze the dynamic process of diffusion in the electric double layer of an electrode. It is also commonly used to study the high energy storage capacity mechanism in electrodes. The general EIS spectrum is mainly composed of two parts: the
PDF
Album
Full Research Paper
Published 27 Aug 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • for the combination of AFM and HIM. While much progress has been made towards increasing the imaging speed of AFM [46][47][48][49][50], most of this progress has been limited to imaging in liquid, due to the inherent bandwidth limitation of cantilevers when using them in dynamic mode in vacuum. Recent
PDF
Album
Full Research Paper
Published 26 Aug 2020

Role of redox-active axial ligands of metal porphyrins adsorbed at solid–liquid interfaces in a liquid-STM setup

  • Thomas Habets,
  • Sylvia Speller and
  • Johannes A. A. W. Elemans

Beilstein J. Nanotechnol. 2020, 11, 1264–1271, doi:10.3762/bjnano.11.110

Graphical Abstract
  • organized and dynamic layers were formed on HOPG (not shown). When, however, 1-phenyloctane, a broadly applied aromatic solvent in liquid-STM studies, was used, it was impossible to image the surface or adsorbed molecules regardless of the used surface, due to the occurrence of a large additional increase
  • of MnTUPCl, which is a sufficient amount to sustain the reactions for weeks, at least in principle. However, since we propose that the reduction of the manganese porphyrins takes place when they are adsorbed to the negatively biased electrode, their adsorption–desorption process must be dynamic. Once
  • rate (both in terms of size and sign), also higher concentrations of the redox-active species lead to higher reaction rates, which points at increased dynamic exchange of the redox-active species at the sample and tip electrodes. Furthermore, the proposed transport of chloride ions through the 1
PDF
Album
Full Research Paper
Published 24 Aug 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • only on absorption and fluorescence change and need dynamic acquisition [23]. A magnetic field powered pressure sensor proposed by Khan et al. [24] is capable of measuring pressure in the range of kilopascals but the suitability for the very low pressure caused by HMIs needs to be examined. A reduced
PDF
Album
Full Research Paper
Published 18 Aug 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • were punched out. The electrodes were then dried in a glass oven (Büchi, Switzerland) under dynamic vacuum at 120 °C overnight and transferred into an argon-filled glovebox (H2O and O2 content <0.1 ppm, MBraun, Germany) without exposure to ambient air. Electrochemical characterization In order to
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020
Other Beilstein-Institut Open Science Activities