Search results

Search for "atomic force microscopy (AFM)" in Full Text gives 407 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Scanning speed phenomenon in contact-resonance atomic force microscopy

  • Christopher C. Glover,
  • Jason P. Killgore and
  • Ryan C. Tung

Beilstein J. Nanotechnol. 2018, 9, 945–952, doi:10.3762/bjnano.9.87

Graphical Abstract
  • /bjnano.9.87 Abstract This work presents data confirming the existence of a scan speed related phenomenon in contact-mode atomic force microscopy (AFM). Specifically, contact-resonance spectroscopy is used to interrogate this phenomenon. Above a critical scan speed, a monotonic decrease in the recorded
  • quantification in atomic force microscopy (AFM) techniques, there exists a myriad of unexplained measurement phenomena caused by mechanical interactions between the scanning AFM tip and the material sample under test. In this article, we show how the velocity at which the tip is swept across the sample surface
PDF
Album
Full Research Paper
Published 21 Mar 2018

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

  • Ying Wang,
  • Yue Shen,
  • Xingya Wang,
  • Zhiwei Shen,
  • Bin Li,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 900–906, doi:10.3762/bjnano.9.84

Graphical Abstract
  • studies and applications. Here, we report a novel method for the characterization of local dielectric distributions based on surface adhesion mapping by atomic force microscopy (AFM). The two-dimensional (2D) materials graphene oxide (GO), and partially reduced graphene oxide (RGO), which have similar
  • : adhesion; atomic force microscopy (AFM); graphene oxide (GO); nanoscale dielectric properties; reduced graphene oxide (RGO); Introduction The local dielectric distribution is a key factor that influences the physical properties and functionalities of various materials such as polymer nanocomposites [1][2
  • ][3][4], carbon nanotube compounds [5][6][7][8], metal–dielectric films [9][10][11][12], and biomembranes [13][14][15]. Understanding the behaviour of these complex nanostructured systems requires precise morphological and dielectric characterization approaches on the nanometre scale. Atomic force
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2018

Comparative study of antibacterial properties of polystyrene films with TiOx and Cu nanoparticles fabricated using cluster beam technique

  • Vladimir N. Popok,
  • Cesarino M. Jeppesen,
  • Peter Fojan,
  • Anna Kuzminova,
  • Jan Hanuš and
  • Ondřej Kylián

Beilstein J. Nanotechnol. 2018, 9, 861–869, doi:10.3762/bjnano.9.80

Graphical Abstract
  • source under the conditions described in the Experimental section (see below). A typical atomic force microscopy (AFM) image with soft-landed Cu NPs on PS is shown in Figure 1a. Apart of a few higher bumps due to stacking of particles on top of each other, one can see an even height distribution because
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2018

Towards the third dimension in direct electron beam writing of silver

  • Katja Höflich,
  • Jakub Mateusz Jurczyk,
  • Katarzyna Madajska,
  • Maximilian Götz,
  • Luisa Berger,
  • Carlos Guerra-Nuñez,
  • Caspar Haverkamp,
  • Iwona Szymanska and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 842–849, doi:10.3762/bjnano.9.78

Graphical Abstract
  • a reference silver layer. The quantified carbon background of ca. 15 atom % was subtracted to determine the actual deposit composition. The topography of the deposits was monitored using atomic force microscopy (AFM) with an AIST Smart SPM system. Data processing was carried out using the free
PDF
Album
Letter
Published 08 Mar 2018

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • ) experiments [34]. The average grain size of the obtained titanium dioxide was found to be about 170 nm based on XRD, scanning electron microscopy (SEM) and atomic force microscopy (AFM) results [34]. In this paper we investigated selected physical parameters of TiO2 such as surface area and porosity. To
PDF
Album
Full Research Paper
Published 26 Feb 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • , France Department of Physics and Astronomy, University of Turku, FIN-20014 Turku, Finland 10.3762/bjnano.9.61 Abstract Adhesion forces between functionalized gold colloidal nanoparticles (Au NPs) and scanning probe microscope silicon tips were experimentally investigated by atomic force microscopy (AFM
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Optimisation of purification techniques for the preparation of large-volume aqueous solar nanoparticle inks for organic photovoltaics

  • Furqan Almyahi,
  • Thomas R. Andersen,
  • Nathan A. Cooling,
  • Natalie P. Holmes,
  • Matthew J. Griffith,
  • Krishna Feron,
  • Xiaojing Zhou,
  • Warwick J. Belcher and
  • Paul C. Dastoor

Beilstein J. Nanotechnol. 2018, 9, 649–659, doi:10.3762/bjnano.9.60

Graphical Abstract
  • concentration on the aqueous solar nanoparticle (ASNP) inks was investigated by monitoring the surface morphology/topography of the ASNP films using atomic force microscopy (AFM) and scanning electron microscopy (SEM) and photovoltaic device performance as a function of ultrafiltration (decreasing SDS content
  • reached was 64 and 50 mN m−1 for the centrifugal and the crossflow purifications, respectively. Influence of free-SDS surfactant on the surface morphology/topography of ASNP films Optical microscopy and atomic force microscopy (AFM) were conducted for ASNP films with low, medium and high dilution factors
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Lyapunov estimation for high-speed demodulation in multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert,
  • Michael R. P. Ragazzon and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2018, 9, 490–498, doi:10.3762/bjnano.9.47

Graphical Abstract
  • demonstrating high tracking bandwidths, strong off-mode rejection and minor sensitivity to cross-coupling effects. Additionally, a five-frequency system operating at 3.5 MHz is implemented for higher harmonic amplitude and phase imaging up to 1 MHz. Keywords: atomic force microscopy (AFM); demodulation
  • ; digital signal processing; field-programmable gate array (FPGA); high-speed; Lyapunov filter; multifrequency; Introduction Atomic force microscopy (AFM) [1] has been integral in the field of nanoscale engineering since its invention in 1986 by Binnig et al. By sensing microcantilever tip–sample
PDF
Album
Full Research Paper
Published 08 Feb 2018

Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy

  • Sujit Kumar Dora,
  • Kerstin Koch,
  • Wilhelm Barthlott and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2018, 9, 468–481, doi:10.3762/bjnano.9.45

Graphical Abstract
  • taken in account to understand how different factors affecting self-assembly of these tubules on HOPG. Koch et al. [21] demonstrated that self-assembly of nonacosan-10-ol tubules resulted in an upright orientation of tubules on HOPG. By employing tapping mode atomic force microscopy (AFM), they observed
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2018

Engineering of oriented carbon nanotubes in composite materials

  • Razieh Beigmoradi,
  • Abdolreza Samimi and
  • Davod Mohebbi-Kalhori

Beilstein J. Nanotechnol. 2018, 9, 415–435, doi:10.3762/bjnano.9.41

Graphical Abstract
  • microscopes, respectively. In analyzing the alignment of CNTs, the most common microscopic methods are atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and scanning transmission microscopy (STM). Electron microscope: By changing the curvature and number
  • confirms the alignment of the CNTs, adapted with permission from [99], copyright 2016 Nature Publishing Group. Scheme of the Langmuir–Blodgett technique: (a) the CNT suspension in the LB device, (b) the preparation of films by barrier compression, (c) substrate dipping vertically, and (d) atomic force
  • microscopy (AFM) images of the aligned CNTs, adapted with permission from [105], copyright 2007 American Chemical Society. Schematic view of the experimental setup for surface acoustic wave (SAW)-based CNT arrangement. (a) Micrographs of the CNT suspension before applying the SAW field and (b) applying the
PDF
Album
Review
Published 05 Feb 2018

Blister formation during graphite surface oxidation by Hummers’ method

  • Olga V. Sinitsyna,
  • Georgy B. Meshkov,
  • Anastasija V. Grigorieva,
  • Alexander A. Antonov,
  • Inna G. Grigorieva and
  • Igor V. Yaminsky

Beilstein J. Nanotechnol. 2018, 9, 407–414, doi:10.3762/bjnano.9.40

Graphical Abstract
  • spread of 0.8°. The bunches of large cleavage steps are visible in the lower left and the upper right corners of Figure 2. Steps (linear defects) are the main features in the images obtained by atomic force microscopy (AFM). We distinguish two types of steps: cleavage steps and the lines of edge
  • surface. Surprisingly, the destruction of the sp2-lattice was not detected in the ordered regions. We suggest that the reagent diffusion under the basal plane surface occurred through the cleavage steps and dislocations with the Burgers vector parallel to the c-axis in graphite. Keywords: atomic force
  • microscopy (AFM); graphene; graphite intercalation compounds (GICs); graphite oxide (GO); highly annealed pyrolythic graphite (HAPG); Introduction Graphite oxide (GO) and its single-layer derivative, graphene oxide, are of great importance due to their potential applications as a part of supercapacitors
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2018

Wafer-scale bioactive substrate patterning by chemical lift-off lithography

  • Chong-You Chen,
  • Chang-Ming Wang,
  • Hsiang-Hua Li,
  • Hong-Hseng Chan and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2018, 9, 311–320, doi:10.3762/bjnano.9.31

Graphical Abstract
  • tapping mode atomic force microscopy (AFM, Dimension Fastscan, Bruker Nano Surfaces, Hsinchu, Taiwan). Topographic AFM images were collected using a silicon cantilever with a spring constant of 48 N/m and a resonance frequency of 190 kHz (Nanosensors, Neuchatel, Switzerland). The substrates were gently
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2018

Gas-assisted silver deposition with a focused electron beam

  • Luisa Berger,
  • Katarzyna Madajska,
  • Iwona B. Szymanska,
  • Katja Höflich,
  • Mikhail N. Polyakov,
  • Jakub Jurczyk,
  • Carlos Guerra-Nuñez and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 224–232, doi:10.3762/bjnano.9.24

Graphical Abstract
  • , we believe that the systematic error in composition values is small as changes in density input did not vary much the composition values. Atomic force microscopy (AFM) measurements were performed with a NT-MDT NTEGRA Spectra system. Data were processed with Gwyddion v2.48 and Origin 2015 software
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2018

Growth model and structure evolution of Ag layers deposited on Ge films

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Ewa Górecka,
  • Jakub Kierdaszuk and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2018, 9, 66–76, doi:10.3762/bjnano.9.9

Graphical Abstract
  • contribution from the change in the grain size and the contribution from the microstrain in the silver grains. However, microstrain should significantly alter the intensities of both interband transition peaks in the silver permittivity spectra, which we do not observe. Furthermore, atomic force microscopy
  • (AFM) scans show that the grain size indeed decreases when the Ag layer is deposited on a Ge wetting film (Figure 2b) with respect to the non wetted film (Figure 2a), which is in consistency with the previous findings [4][19][20][22][24]. Table 1 shows the AFM- and XRR-derived surface roughness root
PDF
Album
Full Research Paper
Published 08 Jan 2018

Material discrimination and mixture ratio estimation in nanocomposites via harmonic atomic force microscopy

  • Weijie Zhang,
  • Yuhang Chen,
  • Xicheng Xia and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2017, 8, 2771–2780, doi:10.3762/bjnano.8.276

Graphical Abstract
  • Weijie Zhang Yuhang Chen Xicheng Xia Jiaru Chu Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China 10.3762/bjnano.8.276 Abstract Harmonic atomic force microscopy (AFM) was employed to discriminate between different
  • [4]. However, it is rather difficult to distinguish a mixture of NPs having similar geometry and dimensions from topographical electron microscopy images. On the contrary, atomic force microscopy (AFM) methods can simultaneously characterize physical and chemical properties in addition to the
PDF
Album
Full Research Paper
Published 21 Dec 2017

Dry adhesives from carbon nanofibers grown in an open ethanol flame

  • Christian Lutz,
  • Julia Syurik,
  • C. N. Shyam Kumar,
  • Christian Kübel,
  • Michael Bruns and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 2719–2728, doi:10.3762/bjnano.8.271

Graphical Abstract
  • on large areas in a cost-effective way. Here, we examine the CNF growth process based on an open ethanol flame with the option to apply a magnetic field. With this method we fabricated randomly oriented and oriented CNFs and investigated their adhesion properties by atomic force microscopy (AFM
PDF
Album
Full Research Paper
Published 15 Dec 2017

Exploring wear at the nanoscale with circular mode atomic force microscopy

  • Olivier Noel,
  • Aleksandar Vencl and
  • Pierre-Emmanuel Mazeran

Beilstein J. Nanotechnol. 2017, 8, 2662–2668, doi:10.3762/bjnano.8.266

Graphical Abstract
  • de Compiègne, UMR CNRS 7337, Roberval, Centre de recherche de Royallieu – CS 60 319 – 60 203 Compiègne cedex, France 10.3762/bjnano.8.266 Abstract The development of atomic force microscopy (AFM) has allowed wear mechanisms to be investigated at the nanometer scale by means of a single asperity
  • quite demanding in experimental validations [13][14]. The development of atomic force microscopy (AFM) in the 90’s has opened the field of tribology at the nanoscale. One of the main advantages of AFM is that a single asperity contact between a nanometer-sized AFM tip and an interacting surface can be
  • nonlinearity behavior of the piezoelectric actuator with regards to imaging. Schematic of the wear-induced atomic force microscopy (AFM) experimental protocols using (A) conventional scanning and (B) circular mode AFM circular displacement. Atomic force microscopy (AFM) contact mode topographic images of wear
PDF
Album
Full Research Paper
Published 11 Dec 2017

Nanoprofilometry study of focal conic domain structures in a liquid crystalline free surface

  • Anna N. Bagdinova,
  • Evgeny I. Demikhov,
  • Nataliya G. Borisenko and
  • Sergei M. Tolokonnikov

Beilstein J. Nanotechnol. 2017, 8, 2544–2551, doi:10.3762/bjnano.8.254

Graphical Abstract
  • boundary structures, common nanotechnology tools are used, for example atomic force microscopy (AFM) [3], light reflection, high-resolution microscopy, X-ray reflection, and transmission electron microscopy. Nanoprofilometers have shown great progress in the last years and are now capable of resolving
PDF
Album
Full Research Paper
Published 29 Nov 2017

Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol

  • Yifan Li,
  • Yunlu Pan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2017, 8, 2504–2514, doi:10.3762/bjnano.8.250

Graphical Abstract
  • using a surface forces apparatus (SFA). They reported an inhibition of slip length with the increase of root mean squared (RMS) roughness, which suggests that a smoother surface results in a larger slip length. The Craig group [18] utilized atomic force microscopy (AFM) to measure the slip length on
PDF
Album
Full Research Paper
Published 27 Nov 2017

Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition

  • Julie A. Spencer,
  • Michael Barclay,
  • Miranda J. Gallagher,
  • Robert Winkler,
  • Ilyas Unlu,
  • Yung-Chien Wu,
  • Harald Plank,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2017, 8, 2410–2424, doi:10.3762/bjnano.8.240

Graphical Abstract
  • (L) = 10−6 Torr·s. Atomic force microscopy Deposits created by FEBID from cis-Pt(CO)2Cl2 were imaged before and after AH cleaning by atomic force microscopy (AFM) in noncontact mode with a 75 ± 15 kHz HQ:NCS18 probe (Mikromasch USA, Watsonville, CA) on a PicoSPM SE AFM. Image processing of line-by
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2017

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • nanotubes are collapsed after deposition onto a silicon wafer, showing an average height (n = 10) of 3.4 ± 0.1 nm by atomic force microscopy (AFM). The surface topography of the DNA nanotube master template before (Figure 2a) and after (Figure 2b) deposition of a ca. 2 nm thick Al2O3 layer and the
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Optical contrast and refractive index of natural van der Waals heterostructure nanosheets of franckeite

  • Patricia Gant,
  • Foad Ghasemi,
  • David Maeso,
  • Carmen Munuera,
  • Elena López-Elvira,
  • Riccardo Frisenda,
  • David Pérez De Lara,
  • Gabino Rubio-Bollinger,
  • Mar Garcia-Hernandez and
  • Andres Castellanos-Gomez

Beilstein J. Nanotechnol. 2017, 8, 2357–2362, doi:10.3762/bjnano.8.235

Graphical Abstract
  • substrate. The topography of the fabricated flakes is characterized by atomic force microscopy (AFM) to determine their thickness (Figure 2c). Below Figure 2a–c we include a colour chart obtained from the analysis of tens of epi-illumination microscopy images of franckeite flakes with different thicknesses
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2017

Expanding the molecular-ruler process through vapor deposition of hexadecanethiol

  • Alexandra M. Patron,
  • Timothy S. Hooker,
  • Daniel F. Santavicca,
  • Corey P. Causey and
  • Thomas J. Mullen

Beilstein J. Nanotechnol. 2017, 8, 2339–2344, doi:10.3762/bjnano.8.233

Graphical Abstract
  • enables direct comparison of thickness to MHDA molecules. Figures 2A and 2B show representative 2 µm × 2 µm and 500 nm × 500 nm atomic force microscopy (AFM) images of a Cu-ligated MHDA-C16 bilayer formed from the solution deposition of MHDA for 18 h, Cu(ClO4)2·6H2O for 5 min, and C16 for 1 h. Figure 2C
PDF
Album
Supp Info
Letter
Published 07 Nov 2017

Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth

  • Landon J. Brower,
  • Lauren K. Gentry,
  • Amanda L. Napier and
  • Mary E. Anderson

Beilstein J. Nanotechnol. 2017, 8, 2307–2314, doi:10.3762/bjnano.8.230

Graphical Abstract
  • varying temperature, time, and deposition method, the goal was to develop and expand design rules to tailor surMOFs with desired thickness, roughness, and grain size. In order to understand the growth mechanism and identify key variables, atomic force microscopy (AFM) and ellipsometry were used to
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2017

Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates

  • Jingran Zhang,
  • Yongda Yan,
  • Peng Miao and
  • Jianxiong Cai

Beilstein J. Nanotechnol. 2017, 8, 2271–2282, doi:10.3762/bjnano.8.227

Graphical Abstract
  • . Finally, a gold film was deposited on the structured PDMS surface by electronic beam evaporation. The arrayed Au pyramids were formed as an active substrate that was used for the following Raman measurements. Figure 2a–d shows atomic force microscopy (AFM) images of arrayed inverted pyramidal cavities
PDF
Album
Full Research Paper
Published 01 Nov 2017
Other Beilstein-Institut Open Science Activities