Search results

Search for "composite" in Full Text gives 478 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

An iridescent film of porous anodic aluminum oxide with alternatingly electrodeposited Cu and SiO2 nanoparticles

  • Menglei Chang,
  • Huawen Hu,
  • Haiyan Quan,
  • Hongyang Wei,
  • Zhangyi Xiong,
  • Jiacong Lu,
  • Pin Luo,
  • Yaoheng Liang,
  • Jianzhen Ou and
  • Dongchu Chen

Beilstein J. Nanotechnol. 2019, 10, 735–745, doi:10.3762/bjnano.10.73

Graphical Abstract
  • ) appeared in the Co/AAO films depending on the anodization duration, and another set of colors (including purple, indigo, blue, blue-green, and green) also appeared in the Cu/AAO films depending on the oxidation time. This colorful AAO composite film with the electrodeposited metal was a result of an
  • increase in the effective refractive index and hence reduction of the reflection of the aluminum substrate [25]. The saturation of the structural colors of the metal-deposited AAO composite film was largely enhanced [25][26][27]. An electrostatic self-assembly technique was also employed to produce large
  • oxidation method in phosphoric acid solution, AAO/Al was firstly prepared, onto which a non-magnetic Ag@AAO composite film was further fabricated by an alternating electrodeposition technique. It was found that under incident light at 0°, the color of the Ag/AAO film changed with the electrodeposition time
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019

Outstanding chain-extension effect and high UV resistance of polybutylene succinate containing amino-acid-modified layered double hydroxides

  • Adam A. Marek,
  • Vincent Verney,
  • Christine Taviot-Gueho,
  • Grazia Totaro,
  • Laura Sisti,
  • Annamaria Celli and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2019, 10, 684–695, doi:10.3762/bjnano.10.68

Graphical Abstract
  • addition of the LDH hybrid materials. There is no reflection coming from pristine LDHs modified by amino acids. In contrast, the PBS–LDH nitrate composite exhibits an initial basal spacing of 0.84 nm. In the case of PBS composites with LDH/PHE or LDH/HIS, the absence of harmonic peaks from the layered
  • chains. With a value of a = 3.4 in Equation 1, the ratio of apparent molecular weight between the composite with Mg2Al/PHE and filler-free PBS is of about 400 times (Mw(PBS–Mg2Al/PHE)/Mw(PBS) = 397, resulting in a similar change in the average repeat units under melt state polymer rheology), thus
  • towards lower wavelengths, at about 300 nm, which is characteristic for pristine amino acid. A similar phenomenon was observed for the PBS composite with Zn2Al/TYR LDH and is described in the literature [15]. It can be explained by the delamination of the LDH platelets and the presence of LDH filler in a
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • experimental or theoretical simulation studies that investigated graphene, zigzag GNR or their composite material forms. Despite the remarkable advancement in recent years, this area is still in its initial development stage. Some critical issues, such as finding an ideal material and the enhancement of
PDF
Album
Full Research Paper
Published 04 Mar 2019

Topochemical engineering of composite hybrid fibers using layered double hydroxides and abietic acid

  • Liji Sobhana,
  • Lokesh Kesavan,
  • Jan Gustafsson and
  • Pedro Fardim

Beilstein J. Nanotechnol. 2019, 10, 589–605, doi:10.3762/bjnano.10.60

Graphical Abstract
  • composites by utilizing the intermolecular hydrogen bonds in natural materials. These materials include wood pulp fibers, abietic acid (resin acid) and inexpensive metal salts. In this work, a hybrid composite was created using bleached and unbleached kraft pulp fibers as cellulose platform. In situ co
  • groups of AA to obtain charge-directed assembly of one material on the other material. Thus, composite hybrid fibers (C-HF) were produced and then characterized by optical (CAM), spectroscopic (XRD, IR) and microscopic techniques (SEM) to determine their average length and distribution, structure and
  • between material entities play a crucial role in the resulting properties. Keywords: abietic acid; composite hybrid fibers; high tensile pulp; hydrophobic pulp; layered double hydroxides; Introduction Renewable chemicals or materials and their value addition are the current focus in the area of
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • , Geelong, Vic 3216, Australia 10.3762/bjnano.10.52 Abstract In this work, a unique three-dimensional (3D) structured carbon-based composite was synthesized. In the composite, multiwalled carbon nanotubes (MWCNT) form a lattice matrix in which porous spherical reduced graphene oxide (RGO) completes the 3D
  • structure. When used in Li–S batteries, the 3D porous lattice matrix not only accommodates a high content of sulfur, but also induces a confinement effect towards polysulfide, and thereby reduces the “shuttle effect”. The as-prepared S-3D-RGO@MWCNT composite delivers an initial specific capacity of 1102
  • mAh·g−1. After 200 charging/discharge cycles, a capacity of 805 mAh·g−1 and a coulombic efficiency of 98% were maintained, implying the shuttle effect was greatly suppressed by the composite matrix. In addition, the S-3D-RGO@MWCNT composite also exhibits an excellent rate capability. Keywords: carbon
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte

  • Konrad Trzciński,
  • Mariusz Szkoda,
  • Andrzej P. Nowak,
  • Marcin Łapiński and
  • Anna Lisowska-Oleksiak

Beilstein J. Nanotechnol. 2019, 10, 483–493, doi:10.3762/bjnano.10.49

Graphical Abstract
  • materials characterized by a developed surface area [9], graphene-based [10] and diamond-based materials [11], conductive polymers (CPs) and hybrid materials [12][13], and numerous types of composite materials [14][15]. For many years, conjugated polymers, also known as conductive polymers, e.g., poly(3,4
  • well as the composite Ti/TiO2/BiVO4/PEDOT:PSS, are presented in Figure 2a. There are five characteristic bands for the pure crystalline anatase phase for all samples. The bands were located at 144, 198, 395, 516 and 637 cm−1 and can be described as Eg(1), Eg(2), B1g, A1g, and Eg(3) active anatase modes
  • wider for the composite electrodes in comparison with bare PEDOT:PSS on a platinum substrate due to PEDOT overoxidation [42], which starts to occur at a potential of E = 0.7 V only in the case of the Pt/PEDOT:PSS electrode. The Ti/TiO2/BiVO4/PEDOT:PSS and Ti/TiO2/PEDOT:PSS electrodes can be safely
PDF
Album
Full Research Paper
Published 15 Feb 2019

Wearable, stable, highly sensitive hydrogel–graphene strain sensors

  • Jian Lv,
  • Chuncai Kong,
  • Chao Yang,
  • Lu Yin,
  • Itthipon Jeerapan,
  • Fangzhao Pu,
  • Xiaojing Zhang,
  • Sen Yang and
  • Zhimao Yang

Beilstein J. Nanotechnol. 2019, 10, 475–480, doi:10.3762/bjnano.10.47

Graphical Abstract
  • composite material. The hydrogel, which is capable of withstanding relatively high temperature, was synthesized by the copolymerization of acrylic acid (AA) and acrylamide (AM) monomer in the water/glycerol solvent system under irradiation with UV light. A common problem of the reported hydrogels is the
  • flakes. The schematic structure and a photograph of the composite electrode is shown in Figure 1b and Figure 1c, respectively. Besides serving to retain water in the hydrogel, the presence of glycerol also improves the mechanical performance of the hydrogel, as shown in Figure 2a and 2b. Figure 2a shows
  • when the layer is stretched, which will enhance the resistance change of the hydrogel under strain. The SEM image of the cross section of the graphene/hydrogel composite is shown in Supporting Information File 1, Figure S2. A great contact between the graphene layer and the hydrogel layer can be seen
PDF
Album
Supp Info
Letter
Published 14 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • material, the peaks related to rGO are not observed in the hybrid materials, which may be due to the low amount of rGO incorporation. Moreover, the peaks related to other impurities are not found in the pattern, indicating the formation of pure hybrid composite materials. The presence of rGO is confirmed
  • rGO [34]. The XPS peaks of g-C3N4 and rGO are shifted slightly to higher and lower binding energies in the GCN-5 hybrid, respectively, indicating possible charge transfer between g-C3N4 and rGO in the heterostructure. Hence, the XPS results confirm the successful preparation of the composite and the
  • existence of an interaction between rGO and g-C3N4 inside the composite. FTIR spectra further confirm (Figure 4) the formation of C3N4 NFs and QDs, as well as the structural changes of C3N4 nanosheets. The peaks at around 3000–3110 cm−1, 1200–1650 cm−1 and 810 cm−1 are due to the N–H stretching vibration
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • binder-free composite electrode, consisting of Ni(OH)2 nanopetals network, Ni nanofoam interlayer and Ni-based metallic glass matrix (Ni(OH)2/Ni-NF/MG) with sandwich structure and good flexibility, was designed and finally achieved. Microstructure and morphology of the Ni(OH)2 nanopetals were
  • shortcoming of bulk nickel hydroxide, various morphologies of Ni(OH)2 with a large specific surface area have been developed. The conventional preparation method of Ni(OH)2 composite electrodes is to press a slurry of nickel hydroxide, conductive agents and binders on a conductive substrate (Ni foam, usually
  • potential range, and Δt is the discharge time of a single SC device. Results and Discussion Material structure The sandwich-like Ni(OH)2/Ni-NF/MG composite electrode inherits the excellent flexibility and ductility of Ni40Zr20Ti40 MG after dealloying in 0.05 M HF solutions for 4 h and being immersed in
PDF
Album
Full Research Paper
Published 25 Jan 2019

Thermal control of the defunctionalization of supported Au25(glutathione)18 catalysts for benzyl alcohol oxidation

  • Zahraa Shahin,
  • Hyewon Ji,
  • Rodica Chiriac,
  • Nadine Essayem,
  • Franck Rataboul and
  • Aude Demessence

Beilstein J. Nanotechnol. 2019, 10, 228–237, doi:10.3762/bjnano.10.21

Graphical Abstract
  • basic media. In the context of using atmospheric conditions for the oxidation of benzyl alcohol and a stable support, we present in this work the catalytic activity of a new composite material: Au25(SG)18 clusters (SG – glutathione) supported on ZrO2 nanoparticles. The interest in using ZrO2 comes from
  • its high physical and chemical stability, along with its ability to form nanoparticles for high dispersion of the gold nanoclusters [24]. In this work, we synthesized Au25(SG)18@ZrO2 (A), a composite material, and studied the calcination effect to control the defunctionalization of the clusters on the
  • activity and selectivity of the heterogeneously catalyzed benzyl alcohol oxidation. Results and Discussion Catalyst characterization A Au25(SG)18@ZrO2 composite material (A), with a theoretical gold loading of 1 wt % Au, was prepared by depositing Au25(SG)18 gold clusters on ZrO2 nanoparticles. Zirconium
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2019

Mechanism of silica–lysozyme composite formation unravelled by in situ fast SAXS

  • Tomasz M. Stawski,
  • Daniela B. van den Heuvel,
  • Rogier Besselink,
  • Dominique J. Tobler and
  • Liane G. Benning

Beilstein J. Nanotechnol. 2019, 10, 182–197, doi:10.3762/bjnano.10.17

Graphical Abstract
  • originating from the presence of LZM. We developed a scattering model and applied it to analyse this structure function, which allowed us to extract structural information on the deformation of lysozyme molecules during aggregation, as well as to derive the mechanisms of composite formation. Keywords
  • : composite; lysozyme; scattering; silica; small-angle X-ray scattering (SAXS); Introduction A mechanistic understanding of aggregation in aqueous media leading to the formation of composites of inorganic nanoparticles and proteins is of paramount interest for colloid chemistry, Earth sciences, or the design
  • bridge between silica NPs, leading to aggregation and flocculation and thus to large silica NP–LZM composites. In the SiO2–LZM model system, a number of studies investigating the relationship between silica NP sizes, and adsorption modes of lysozyme revealed a correlation between composite properties and
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • composite onto a novel nanoporous electrode surface with low noble metal loading and improved stability. The Ru/C is coated on the pore walls of anodic alumina templates in a one-step laser-induced deposition method from Ru3(CO)12 solutions. Scanning electron microscopy proves the presence of a continuous
  • high activity (current per mass of noble metal) for electrocatalytic water oxidation. Results and Discussion Laser-induced deposition of planar hybrid Ru/C films According to previous studies on the one-step laser-induced deposition method of AuAg/C composite, the choice of organometallic precursor
  • reaction [69][70][71]. Conclusion With this, we have established a novel type of nanostructured Ru/C composite electrode for the oxygen evolution reaction at pH 4 by laser-induced deposition. Laser irradiation of Ru3(CO)12 in 1,2-dichloroethane at 325 nm provides the first laser-induced coatings of hybrid
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • matter. The new composite is stable up to 900 °C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible. Keywords: 4-nitrophenol; Carica papaya seeds; clay; E. coli
  • with a much lower efficiency. This finding suggests that the presence of Zn2+ in the composite material directly affects E. coli removal from solution, likely because zinc has antibacterial properties. Although the precise functional mechanism is unknown, it has been suggested that Zn-doped materials
  • deactivate bacteria by damaging its cell membrane and DNA [50]. It is known that electrostatic adsorbent–adsorbate interactions do occur in solution at pH values either above or below the pHpzc of the adsorbent [51]. Based on the latter, it is believed that the composite adsorbent material in this study does
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • optimum decoration density is reached and afterwards the response decreases [6][19][28]. In fact, the obtained results are better regarding the intensity of the sensor response, as compared to those obtained by Chuanfei Hua et al. [23] using a composite of SWCNT–Fe2O3, although their sensors show faster
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Graphene–graphite hybrid epoxy composites with controllable workability for thermal management

  • Idan Levy,
  • Eyal Merary Wormser,
  • Maxim Varenik,
  • Matat Buzaglo,
  • Roey Nadiv and
  • Oren Regev

Beilstein J. Nanotechnol. 2019, 10, 95–104, doi:10.3762/bjnano.10.9

Graphical Abstract
  • , these additives enhance the thermal conductivity of the composite, but on the other hand, they increase the viscosity of the composite and hence impair its workability. This in turn could negatively affect the device–matrix interface. To address this problem, we suggest a tunable composite material
  • comprising a combination of two different carbon-based fillers, graphene nanoplatelets (GNPs) and graphite. By adjusting the GNP:graphite concentration ratio and the total concentration of the fillers, we were able to fine tune the thermal conductivity and the workability of the hybrid polymer composite. To
  • facilitate the optimal design of materials for thermal management, we constructed a ‘concentration–thermal conductivity–viscosity phase diagram’. This hybrid approach thus offers solutions for thermal management applications, providing both finely tuned composite thermal properties and workability. We
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes

  • Mateusz Mrukiewicz,
  • Krystian Kowiorski,
  • Paweł Perkowski,
  • Rafał Mazur and
  • Małgorzata Djas

Beilstein J. Nanotechnol. 2019, 10, 71–78, doi:10.3762/bjnano.10.7

Graphical Abstract
  • starts to be less uniform than in pure 5CB and a large number of defects makes this composite easier to reorient. Moreover, the director field is disturbed by aggregation of GO flakes. At high voltages (U > Uth), the change of the director reorientation (U > Uth) from planar to homeotropic alignment and
  • nematic order in a planar oriented cell at (a) low, (b) medium, and (c) high concentrations of GO flakes and an electric-field-induced homeotropic alignment in the NLC-GO composite of (d) low, (e) medium, and (f) high concentration. Values of the electric anisotropy Δε in the 5CB-GO composites as a
PDF
Album
Full Research Paper
Published 07 Jan 2019

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • formed with metals and semiconductors, i.e., plasmonic, composite QD nanostructures, provides another efficient way to tune the unique optical properties. In the past decades, much attention has been given to the development of metal-enhanced optical properties. Some researchers have noted that certain
  • distance using the combined strong electrostatic adsorption. Secondly, FA was conjugated with this composite nanoparticle for biological applications, where the FA renders the nanoparticle useful for the specific targeting of cancer cells [28][29]. According to current knowledge, when bulk semiconductor
  • OD/mL. Subsequently, 1 mL of the CdSe/ZnS (1 OD/mL) mixture was added to 10 mL of the GNR solution, and the mixture was left under stirring overnight to obtain the GNR@CdSe/ZnS composite nanoparticles. Synthesis of GNR@CdSe/ZnS@FA nanoparticles From the stock solution, 2 mL of 4 mg/mL aqueous GNR
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • (composite of weakly or medium strongly bound particles), in which for 50% or more of the particles in the number size distribution one or more external dimensions is at the nanoscale [3]. According to the current state of knowledge, aggregates and agglomerates of the nanoobjects (NOAA) that are bigger than
  • /ST8/07559: „Three-dimensional composite scaffold based on biodegradable polymers and bioceramic with incorporated growth factors for bone tissue engineering. Research on the manufacturing process and the material influence on living cells function“. We sincerely thank Katarzyna Czarnecka for
PDF
Album
Full Research Paper
Published 27 Dec 2018

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • ; Introduction Composite nanomaterials (often referred to as “nanodielectrics” by the dielectrics community) can be synthesized by including dielectric nanoparticles in a polymeric matrix and are often used as insulating material [1][2][3]. Although the mechanical and thermal behavior of the base insulating
PDF
Album
Full Research Paper
Published 07 Dec 2018

Co-intercalated layered double hydroxides as thermal and photo-oxidation stabilizers for polypropylene

  • Qian Zhang,
  • Qiyu Gu,
  • Fabrice Leroux,
  • Pinggui Tang,
  • Dianqing Li and
  • Yongjun Feng

Beilstein J. Nanotechnol. 2018, 9, 2980–2988, doi:10.3762/bjnano.9.277

Graphical Abstract
  • successively dispersed in polypropylene to form HnMn′-Ca2Al/PP composite films (with H = HALS and M = MP) through a solvent casting method. The corresponding crystalline structure, chemical composition, morphology as well as the resistance against thermal aging and photo-oxidation are carefully investigated by
  • in the composite. Figure 7a depicts the FTIR spectra of HnMn′-Ca2Al/PP composites in absorbance mode. Here, all composites present the characteristic bands of PP: 2950, 2915, 2868, 2837, 1454, and 1375 cm−1. Some additional bands assigned to LDHs and guest anions are also observed after addition of
  • HnMn′-Ca2Al-LDHs. Figure 7b demonstrates the visible-light transmittance of HnMn′-Ca2Al-LDH/PP composite films, which is one of crucial properties of the PP products. All the samples show a similar trend demonstrating that there is a good dispersion of Ca2Al-LDHs in the PP matrix without affecting its
PDF
Album
Full Research Paper
Published 05 Dec 2018

The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy

  • Jan Hynek,
  • Sebastian Jurík,
  • Martina Koncošová,
  • Jaroslav Zelenka,
  • Ivana Křížová,
  • Tomáš Ruml,
  • Kaplan Kirakci,
  • Ivo Jakubec,
  • František Kovanda,
  • Kamil Lang and
  • Jan Demel

Beilstein J. Nanotechnol. 2018, 9, 2960–2967, doi:10.3762/bjnano.9.275

Graphical Abstract
  • identical conditions (e.g., irradiation wavelength, time, dose). We can compare the activity of nanoICR-2/TPPPi(Ph) with the activity of previously studied PCN-222 nanoparticles where both systems display comparable activity [22]. Conclusion In the context of photodynamic therapy, we present composite
  • composite nanoparticles. Unfortunately, the elucidation of the structure–activity relationship is rendered difficult due to the instability of the nanoICR-2/porphyrin nanoparticles in PBS media, as also observed for Zr-based MOFs. Experimental Materials: N,N-dimethylformamide (DMF, Lach-Ner, Czech Republic
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2018

Layered calcium phenylphosphonate: a hybrid material for a new generation of nanofillers

  • Kateřina Kopecká,
  • Ludvík Beneš,
  • Klára Melánová,
  • Vítězslav Zima,
  • Petr Knotek and
  • Kateřina Zetková

Beilstein J. Nanotechnol. 2018, 9, 2906–2915, doi:10.3762/bjnano.9.269

Graphical Abstract
  • . The addition of the nanofiller was found to influence the composite properties – the exfoliated particles were found to have a higher impact on the properties of the prepared composites than the unexfoliated particles of the same loading Keywords: exfoliation; layered phenylphosphonate; nanomaterial
  • ; nanofiller; polymer filler; Introduction The idea to combine materials with different properties to create a composite that benefits from a synergistic effect and to gain better and novel materials by this way is a very old concept. The reinforcement of a polymer matrix with inorganic fillers with the aim
  • phenylphosphonate dihydrate with formula CaC6H5PO3∙2H2O (CaPhP) was used both in exfoliated and unexfoliated forms to prepare a polymer composite with the intention to move towards applied science and find possible applications. The CaPhP layer can be imagined as a sheet consisting of three plies. The central ply
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2018

The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers

  • Elliot Geikowsky,
  • Serdar Gorumlu and
  • Burak Aksak

Beilstein J. Nanotechnol. 2018, 9, 2893–2905, doi:10.3762/bjnano.9.268

Graphical Abstract
  • carbon nanotubes [24][25][26] and stiff thermoplastic materials [27]. On the other hand, micrometer-scale fibers (i.e., fibers with diameter larger than 5 µm) do not adhere even to smooth surfaces as they lack the necessary contact compliance [28]. Composite fibers where the tip is softer than the stalk
  • compliance. In composite fibers, tip articulation could be critical for performance. In some biological attachment systems, such as the male ladybird beetle (Coccinella septempunctata), a joint of soft material between the setal stalk and the tip of an individual fiber has been discovered [31]. This feature
  • compliance and facilitates the use of such a stiff polymer. The joint stiffness was controlled using three polyurethane materials of elastic moduli Ej = 0.45, 8.89 and 126 MPa as the joint material. The final array of the composite fibers consisted of a stiff stalk and tip linked by a soft joint as shown in
PDF
Album
Full Research Paper
Published 19 Nov 2018

Nanostructure-induced performance degradation of WO3·nH2O for energy conversion and storage devices

  • Zhenyin Hai,
  • Mohammad Karbalaei Akbari,
  • Zihan Wei,
  • Danfeng Cui,
  • Chenyang Xue,
  • Hongyan Xu,
  • Philippe M. Heynderickx,
  • Francis Verpoort and
  • Serge Zhuiykov

Beilstein J. Nanotechnol. 2018, 9, 2845–2854, doi:10.3762/bjnano.9.265

Graphical Abstract
  • to fabricate WO3·2H2O electrochemical energy storage electrodes with a higher rate capability than annealed WO3 [38]. The investigation of 2D sheets of WO3 and a rGO–WO3 composite prepared via a one-pot hydrothermal method suggested that the rGO–WO3 composite could be a promising material for
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • higher sensitivity than that of the pure SnO2 sensor at 120 °C. The composite sensor was able to detect 500 ppb HCHO. The unique sensing properties of SnO2–GO sensor was interpreted by the large specific surface area, the high number of oxygen functional groups and electric regulation effects provided
  • , meaning that electrons transfer from rGO to SnO2 in the heterojunctions. The Schottky barrier is only 0.2 eV due to the changed Fermi level of the composite structure after achieving a dynamic balance of the electron flow, indicating that the electrons are able to pass through the energy barrier. In
  • that the resistance of composite sensor decreases dramatically, leading to high sensitivity and rapid response. Isotypical p–p homojunctions are formed when rGO forms composites with most p-type metal-oxide semiconductors. The enhancement mechanism of p–p homojunctions is similar to that of p–n
PDF
Album
Review
Published 09 Nov 2018
Other Beilstein-Institut Open Science Activities