Search results

Search for "dispersion" in Full Text gives 664 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • for 90 s. Also, a constant stirring was maintained throughout the degradation of MP with Cu2O NPs. Table 1 summarizes the dispersion conditions for the Cu2O NPs of different size. The concentration of Cu2O was calculated by diving the amount of substance of Cu2O by the volume of the dispersion and
  • (bright red powder). The colored powders can be seen in Figure 2, as well as their color in aqueous dispersion. It is important to mention that there is no evidence in XRD for the presence of CuO or CuCO3, although these compouds are observed in XPS. Figure 3a shows the HRTEM image of a typical Cu2O
  • passivation of the Cu2O surface because the degradation of methyl parathion does not occur when CuO is used instead of Cu2O in the dispersion medium. Second, CuO could play an important role in the degradation mechanism by anchoring MP molecules on the surface of Cu2O through a coordinated bond between Cu2
PDF
Album
Full Research Paper
Published 12 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • -PAW general gradient approximation [33]. To account for dispersion forces the zero damping DFT-D3 correction of Grimme et al. was used [34]. Slabs were constructed from two layers of iridium and one or two bilayers of cobalt oxide. For the iridium lattice the relaxed DFT-D3 parameter (a = 3.835 Å) was
  • phenylporpyhrin (Co-DPP, 1) and a cyano-functionalized, non-metalated phenylporpyhrin (2H-TCNPP, 2) on cobalt oxide CoO(111) films in the ultrathin limit of one and two bilayer thickness. It is found that the molecule–substrate interaction decreases with increasing cobalt oxide thickness. Nevertheless, dispersion
PDF
Album
Full Research Paper
Published 05 Oct 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • into an independent field of science [2]. This shows that understanding wetting phenomena is crucial for a variety of industrial processes and research fields. In microtechnology, the dispersion of organic photoresists on substrates is indispensable for lithographic top-down microstructuring, yielding
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • π-stacked organic multilayer thin films [101][102][103]. The shift to higher BE could, in part, be attributed to the screening effect [50], and the broadening could be ascribed to the intermolecular band dispersion [18]. The multilayer structure of F4PEN on Ag(111) is unknown, but the comparison of
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • nanoparticle coating plays an important role in the nanoparticle dispersion stability and biocompatibility. However, theoretical studies in this field are lacking. In addition, the ways in which the nanoparticle coating influences the magnetic properties of the nanoparticles are not yet understood. In order to
  • other hand, organic coating (particularly polymers) has a number of advantages over inorganic coating, such as better particle dispersion, good colloidal stability, biocompatibility, good nanoparticle circulation in the blood, reduced toxicity and low risk of blood capillary obstruction. In the last
PDF
Album
Full Research Paper
Published 12 Aug 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • dimension The dimension of a nanoparticle has two values, i.e., the synthesis dimension and the real dimension in dispersion media. The physical dimension of the nanoparticle obtained at the end of the synthesis process is measured with an electron microscope and is important for the physical and chemical
  • ultrasmall SPIONs can be used for gene therapy because of that [70]. SPIONs with diameters of about 100 nm are favored for their good surface-to-volume ratio and dispersion properties [71]. Also, the smaller the nanoparticle is, the longer it is retained in the blood circulation [72], which could also lead
  • kept for storage similar to the Fe collected from dead red blood cells. This can only happen up to the maximum capacity of the spleen [67]. Studying the diffusion of SPIONs in the brain for MRI, Wang and collaborators [128] showed that dextran-coated SPIONs (20 nm) have a good dispersion in the
PDF
Album
Review
Published 27 Jul 2020

Plant growth regulation by seed coating with films of alginate and auxin-intercalated layered double hydroxides

  • Vander A. de Castro,
  • Valber G. O. Duarte,
  • Danúbia A. C. Nobre,
  • Geraldo H. Silva,
  • Vera R. L. Constantino,
  • Frederico G. Pinto,
  • Willian R. Macedo and
  • Jairo Tronto

Beilstein J. Nanotechnol. 2020, 11, 1082–1091, doi:10.3762/bjnano.11.93

Graphical Abstract
  • samples was analyzed by SEM using a Carl Zeiss scanning microscope, model EVO 50. The sample was supported on the sample holder by dispersion of the powder on conductive double-sided adhesive tape. The samples were gold-coated before the measurements using a Sputter BAL-TEC, MED 0.50. Mass-coupled thermal
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • with a 1:2 aperture and 7 Å/mm linear dispersion. The crystals were placed in a closed helium cryostat LTS-22 C 330 perpendicular to the b axis and their spectra were obtained at low temperatures with ≈0.5 meV resolution since both the spectrometer entrance and exit slits did not exceed 70 µm. The
  • a 1:2 aperture and 7 Å/mm linear dispersion. Results and Discussion The quality and composition of the single crystals were verified by optical and X-ray diffraction (XRD) analysis. The position of the atoms relative to the crystal lattice axes and the crystal XRD pattern is shown in Figure 1. A
  • measured reflection spectra of the A and B excitons (experimental data) are calculated based on the dispersion ratios in the single-oscillator and multi-oscillator models, according to a method described in our previous work [26]. Figure 6 shows the experimentally measured and the calculated profiles of
PDF
Album
Full Research Paper
Published 16 Jul 2020

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • among experimental and theoretical researchers. Electrical properties such as a charge mobility in the range of 105 cm2·V−1·s−1, a minimum conductivity at the Dirac point of 4e2/πh (at low temperature), and remarkable optical properties such as linear dispersion of the Dirac electrons make broadband
PDF
Album
Full Research Paper
Published 15 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • 575 nm (for the 8 Pa sample with 15 nm of Au) [35]. Moreover, the full width at half maximum (FWHM) increased as a function of the AuNP size, due to the fact that NPs exhibited a broader dispersion, as reported also by Gaspar and co-workers [36]. In other words, the optical properties and the LSPR
PDF
Album
Full Research Paper
Published 14 Jul 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • stabilization of metal nanoparticles and for a good dispersion of active species that are formed upon reduction of coordinated or impregnated metal precursors while minimizing their agglomeration and leaching [35]. In the literature we can find some studies that are focused on CTFs as catalysts for ORR. In the
  • % Ni/CTF-1. This means that only a small part of the Ni NPs remains in the IL dispersion and supports the suggested role of nitrogen atoms in the CTFs as anchor points for the Ni NPs. The obtained nickel loadings on CTF-1 are similar to what has been reported for Ni nanoparticles encased in graphitic
  • , Supporting Information File 1), its performance is better than many of these catalysts and its synthesis does not require special techniques or sophisticated equipment. The modifiable nitrogen functionalities enable stabilization and dispersion of metal sites throughout the support. The high chemical and
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • becomes apparent that the increase of Ag deposition thickness does not significantly increase the size and distribution density of the nanoparticles in the TNC, and that the Ag nanoparticles still exhibit appropriate size and good dispersion. The fine structure of nanocolumns and the distribution of Ag
PDF
Album
Full Research Paper
Published 05 May 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • the EPI to prepare a polyimide–silica hybrid film having a low CTE. However, because of the poor dispersion of the nanomaterial and the high viscosity of the polymer during wet blending [17][18], the nanomaterial content in the composites is usually low, which causes the CTE of the polymer template to
PDF
Album
Full Research Paper
Published 20 Apr 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • of the dispersion is about 0.57 mg·mL−1 with a yield of 5.7%, which are the highest values reported to date. These high values of concentration and yield can be attributed to a favorable matching of energies involved in exfoliation and stabilization of MoO3 nanosheets in 2-butanone. Interestingly
  • , the MoO3 dispersion in 2-butanone retains its intrinsic nature even after exposure to sunlight for 24 h. The composites of MoO3 nanosheets were used as an electrode material for supercapacitors and showed a high specific capacitance of 201 F·g−1 in a three-electrode configuration at a scan rate of 50
  • dispersions was recorded using a UV–vis spectrophotometer (Perkin Elmer Lambda 750) in 10 mm quartz cuvettes. The concentrations of dispersions were determined by using thermogravimetric analysis. For this, 4 mL of MoO3 dispersion was filled in a 5 mL beaker followed by drying off the solvent at 80 °C in a
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • for diameter characterization, including the measured diameter distribution histogram, as well as the calculated average diameter, standard deviation, and confidence interval. In addition, energy dispersion spectroscopy (EDS, Hitachi S-4800, Japan) was used to identify the elemental composition of the
PDF
Album
Full Research Paper
Published 15 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • endocytosis of NCs. The generation of ROS upon X-ray irradiation in the presence of [Au8(C21H27O2)8] significantly suppressed the tumorigenicity in vivo after one radiotherapy treatment in mouse models. Because of their well-defined surface functionalities and small size, the dispersion behavior of NCs is
PDF
Album
Review
Published 30 Mar 2020

Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside

  • Gennady L. Burygin,
  • Polina I. Abronina,
  • Nikita M. Podvalnyy,
  • Sergey A. Staroverov,
  • Leonid O. Kononov and
  • Lev A. Dykman

Beilstein J. Nanotechnol. 2020, 11, 480–493, doi:10.3762/bjnano.11.39

Graphical Abstract
  • volume of water equal to the volume of the starting dispersion of glyco-GNPs. A 0.5 mL sample of this aqueous solution was successively mixed with 0.5 mL of a 5% aqueous phenol solution in a 10 mL conical test tube. Next, 2.5 mL of 95% sulfuric acid was added to achieve complete mixing of the test tube
  • consideration that 1 mL of GNPs dispersion contains ca. 1.6 × 1012 particles and molecular weights of glycosides 1 and 2 are 853 g·mol−1 and 1174 g·mol−1, respectively. Stability of the glyco-GNPs 3 and 4 (prepared as described above) against aggregation was demonstrated by the following experiments. Solutions
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • thickness should be observable in PXRD measurements. After irradiation of a dispersion of 2D-AzoC2, 2D-AzoOC4 and 2D-AzoOC12 at λ = 313 nm for 600 s, the materials were dissolved in MeOD and 1H NMR was measured (Figure 2E). According to UV–vis kinetic measurements of the dispersed materials a time period of
  • the 1H NMR measurements. Irradiation at 313 nm of a dispersion of the particles in organic solution leads to the reduction of the absorption signal at 325 nm, which is expected for a successful photoisomerisation (Figure 5A). In addition, the spectra are shifted to lower intensities. This is caused by
  • absorption is observed, indicating a successful photoisomerisation to the trans-conformation of the ligands on the perovskite surface. As already mentioned, the dispersion is destabilized through the preceding trans–cis isomerisation, which is not reversible. This behaviour is observed for all ligands
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • construction of CuO-based heterostructures (e.g., 0D/2D CuO/TiO2, 0D/3D CuO/ZnO, 2D/2D CuO/Fe2O3, 0D/2D CuO/C3N4, 2D/0D CuO/Ag3PO4) [6][12][15][16][17] and the dispersion of CuO on supporting materials (e.g., graphene, carbon nanotube) [7][18] are considered to be the most effective ways to address these
  • (Figure 3f, inset), which provided channels for the fast transfer of photoinduced e− from the conduction band (CB) of CuO to tourmaline. The energy dispersive X-ray (EDX) elemental mapping verified the uniform dispersion of CuO throughout the CuO/tourmaline composite (Figure 3g). The pore structure of the
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • uptake. For such studies, the nanoparticle dispersion, the cell culture conditions, the cell line investigated, and the methods used to characterize the uptake mechanisms are all crucial. Unfortunately, there are often no agreements on how to perform uptake studies in a standardized way. Recently, this
  • describe some technical challenges concerning in vitro studies of the endocytosis of nano-sized materials. 4.1 Nanoparticle dispersion in biological media: agglomeration and corona formation One of the most important aspects to consider when studying nanoparticle interactions with cells, as well as when
  • , it is important to characterize the nanoparticle dispersion in the biological media in which the nanomedicine will be applied, and to monitor potential agglomeration and stability over time. Additionally, studies in which nanoparticles are incubated on cells without serum or other biological fluids
PDF
Album
Review
Published 14 Feb 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • mass loss of NPs during the flow. Tables S1–S4 (Supporting Information File 1) summarize the experimental conditions and results from the flow of NPs through biomimetic hydrogel channels. In a typical transport study, 1 mL aqueous dispersion of NPs was injected via a syringe for vertical flow through
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • -green solution. The solution was kept at room temperature for 1 h to form a homogeneous dispersion. The CA was soaked in the above solution and then transferred into a 100 mL autoclave kept at 150 °C for 6 h. Once the reaction was completed, the yellow-black products were collected by filtration and
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field

  • Levente Máthé and
  • Ioan Grosu

Beilstein J. Nanotechnol. 2020, 11, 225–239, doi:10.3762/bjnano.11.17

Graphical Abstract
  • does not show up in the density of states and in the differential conductance for zero chemical potential due to the linear energy dispersion of graphene. An analytical method to calculate self-energies is also developed which can be useful in the study of graphene-based systems. Conclusion: Our
  • points the energy dispersion of quasiparticles in graphene is linear in momentum. This linear band structure is called a Dirac cone, and it is at the basis of many interesting physical phenomena such as the ’chiral’ quantum Hall effect [51], the Klein tunneling effect [50] and the Aharonov–Bohm effect
  • ) graphene leads, and s denotes the valley index. εk = vFk is the linear energy dispersion of the Dirac fermions in graphene with vF ≈ 106 m/s being the graphene Fermi velocity. All electrodes are at same temperature T. Thus, the momentum distributions of the Dirac fermions inside the graphene electrodes are
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • thermal and electrical conductivities and the lowest electrical percolation threshold were achieved with GnPs of a larger lateral size. This could have been attributed to the fact that the GnPs of larger lateral size exhibited a better dispersion in HDPE and formed conductive pathways easily observable in
  • ’ mechanical properties due to poorer dispersion compared to the others. In addition, the size of the GnPs had no considerable effect on the melting and crystallization properties of the HDPE/GnP nanocomposites. Keywords: electrical properties; graphene nanoplatelets; mechanical properties; polymer matrix
  • values. Additionally, G3 was seen to have better dispersion when compared to G1 containing the HDPE nanocomposites. XPS sample analysis gave more information on the GnPs’ chemical composition. The XPS results of GnPs are shown in Figure 2 and Table 1. The GnPs generally showed a strong signal for carbon
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020
Other Beilstein-Institut Open Science Activities