Search results

Search for "feedback" in Full Text gives 226 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Unlocking higher harmonics in atomic force microscopy with gentle interactions

  • Sergio Santos,
  • Victor Barcons,
  • Josep Font and
  • Albert Verdaguer

Beilstein J. Nanotechnol. 2014, 5, 268–277, doi:10.3762/bjnano.5.29

Graphical Abstract
  • frequency and mode under consideration are externally excited [24]. In summary, FM and/or AM feedback systems can be employed in one [29], several [27] or all of the modes under consideration in order to quantify properties on the nanoscale through observables [30] while simultaneously enhancing sensitivity
PDF
Album
Full Research Paper
Published 11 Mar 2014

Manipulation of nanoparticles of different shapes inside a scanning electron microscope

  • Boris Polyakov,
  • Sergei Vlassov,
  • Leonid M. Dorogin,
  • Jelena Butikova,
  • Mikk Antsov,
  • Sven Oras,
  • Rünno Lõhmus and
  • Ilmar Kink

Beilstein J. Nanotechnol. 2014, 5, 133–140, doi:10.3762/bjnano.5.13

Graphical Abstract
  • certain limitations. AFM is used for both displacement and visualization of the initial and the final position of the NPs, but these two procedures cannot be performed simultaneously. Therefore there is no real-time visual feedback in a single line scan concerning the trajectory of the particle and its
  • ). During the manipulation, the tip moved parallel to the surface along a straight line without feedback loop. At the end of every manipulation event the tip was abruptly retracted from the NP to avoid sticking of the particle to the tip. Two different modes of the tip oscillation direction were used in
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2014

Influence of the adsorption geometry of PTCDA on Ag(111) on the tip–molecule forces in non-contact atomic force microscopy

  • Gernot Langewisch,
  • Jens Falter,
  • André Schirmeisen and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2014, 5, 98–104, doi:10.3762/bjnano.5.9

Graphical Abstract
  • forces start to partially compensate the attractive forces), the non-monotonic behavior of the frequency shift as a function of the tip–sample distance makes a stable operation of the distance feedback loop impossible. Furthermore, a stable and inert tip is required to avoid that the tip deforms or picks
PDF
Album
Full Research Paper
Published 27 Jan 2014

Design criteria for stable Pt/C fuel cell catalysts

  • Josef C. Meier,
  • Carolina Galeano,
  • Ioannis Katsounaros,
  • Jonathon Witte,
  • Hans J. Bongard,
  • Angel A. Topalov,
  • Claudio Baldizzone,
  • Stefano Mezzavilla,
  • Ferdi Schüth and
  • Karl J. J. Mayrhofer

Beilstein J. Nanotechnol. 2014, 5, 44–67, doi:10.3762/bjnano.5.5

Graphical Abstract
  • , compensation for the resistance of the electrolyte by positive feedback has been applied to avoid errors when comparing catalysts with different platinum and carbon content [74]. A representative set of ORR measurements is provided for one of the catalysts studied (Pt@HGS 1–2 nm catalyst) in Figure 2A and
PDF
Album
Supp Info
Review
Published 16 Jan 2014

Noise performance of frequency modulation Kelvin force microscopy

  • Heinrich Diesinger,
  • Dominique Deresmes and
  • Thierry Mélin

Beilstein J. Nanotechnol. 2014, 5, 1–18, doi:10.3762/bjnano.5.1

Graphical Abstract
  • noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed
  • feedback loops of a nc-AFM as a function of the feedback controller settings, and showed that at a weak probe–surface interaction, the feedback loops can be considered independently whereas at a strong interaction, they become coupled. In our work on the dynamic behavior of AM-KFM [8], we studied the noise
  • designing operational amplifier circuits. The noise PSD is modeled as if the bandwidth was unlimited and later, the bandwidth is chosen as a function of the acceptable signal fluctuation. This approach is appropriate because (1) increasing the closed loop bandwidth of a stable feedback loop above a certain
PDF
Album
Full Research Paper
Published 02 Jan 2014

Structural development and energy dissipation in simulated silicon apices

  • Samuel Paul Jarvis,
  • Lev Kantorovich and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2013, 4, 941–948, doi:10.3762/bjnano.4.106

Graphical Abstract
  • to modify the quality of the image. The process typically involves gentle indentations of the tip by 1–2 Å into the surface relative to the Δf feedback z position. As the tip is indented into the surface either material transfer, or atomic rearrangement can improve or worsen the quality of the AFM
PDF
Album
Full Research Paper
Published 20 Dec 2013

In situ growth optimization in focused electron-beam induced deposition

  • Paul M. Weirich,
  • Marcel Winhold,
  • Christian H. Schwalb and
  • Michael Huth

Beilstein J. Nanotechnol. 2013, 4, 919–926, doi:10.3762/bjnano.4.103

Graphical Abstract
  • changing the deposition parameters. Here, we present a first implementation of such a feedback control mechanism and employ an evolutionary genetic algorithm (GA) for the in situ optimization of the electrical conductivity of nanostructures that are prepared by FEBID [17]. By using the time gradient of the
  • adaption to every experimental circumstance with direct feedback promises a significant potential for future FEBID research. Furthermore, the application of the GA is not restricted to the optimization of conductance but can also be applied to, e.g., optimize dielectric properties of FEBID deposits by
PDF
Album
Full Research Paper
Published 17 Dec 2013

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • is pushed into the material at a fixed load PI and an initial depth hI. The force is held constant by the system feedback throughout the creep time and the creep is detected as change in position required to compensate for the relaxation and to maintain constant force. Relaxation of the viscoelastic
  • for [84]. The bandwidth advantage has been extended to the MHz range, allowing an access to higher harmonics [85][86][87][88][89]. This provides several advantages: Higher harmonics can be exploited to separate the mechanical measurement from the topographic feedback, the signal-to-noise ratio can be
  • phase shift was removed by conducting a comparative measurement on a stiff, clean surface. By modifying the AFM setup, Hutter et al. induced small oscillations to the deflection signal by inserting the modulation directly to the feedback loop to generate a compensatory oscillation of the sample z-piezo
PDF
Album
Review
Published 29 Nov 2013

Simulation of electron transport during electron-beam-induced deposition of nanostructures

  • Francesc Salvat-Pujol,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2013, 4, 781–792, doi:10.3762/bjnano.4.89

Graphical Abstract
  • the curves corresponding to the (thick) deposit and the substrate. Thus, under the assumption that the presence of a large number of electrons (slow or fast) enhances the dissociation rate of the precursor gas molecules adsorbed on the substrate, one can infer the following positive-feedback process
  • metal content, then the simulations show that a larger deposit density leads to enhanced electron backscattering. This implies that random fluctuations in deposit density could be amplified through positive feedback. The presented simulations therefore provide an overview of the effect of the primary
PDF
Album
Full Research Paper
Published 22 Nov 2013

Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory

  • Mir Masoud Seyyed Fakhrabadi,
  • Abbas Rastgoo and
  • Mohammad Taghi Ahmadian

Beilstein J. Nanotechnol. 2013, 4, 771–780, doi:10.3762/bjnano.4.88

Graphical Abstract
  • the larger tube can be the movable part of the system as considered in this paper, and the other parts such as graphene sheets and actuation devices can be added to the considered section of the nanotube (Figure 3). Another application of the system is its utilization for feedback control. A control
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2013

Energy-related nanomaterials

  • Paul Ziemann and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 678–679, doi:10.3762/bjnano.4.76

Graphical Abstract
  • ” are the fundamental building blocks toward realizing the general aim of an energy supply on demand as unrestricted as possible. Meanwhile, however, it has become clear that this general aim leads to conflicting feedback loops on the ecological environment. Growing awareness of such deteriorating
PDF
Editorial
Published 24 Oct 2013

Ultramicrosensors based on transition metal hexacyanoferrates for scanning electrochemical microscopy

  • Maria A. Komkova,
  • Angelika Holzinger,
  • Andreas Hartmann,
  • Alexei R. Khokhlov,
  • Christine Kranz,
  • Arkady A. Karyakin and
  • Oleg G. Voronin

Beilstein J. Nanotechnol. 2013, 4, 649–654, doi:10.3762/bjnano.4.72

Graphical Abstract
  • . The microelectrode modified by metal cyanoferrate was positioned in close proximity to the hydrogen peroxide generating UME in feedback mode recording the Faraday current of the Au microelectrode during the approach of the modified electrode. Prior to the approach curve, the electrodes were positioned
  • centered to each other using an optical microscope. The non-biased modified UME was then approached to the Au microelectrode while the feedback current at the Au UME was recorded in 10 mM ferrocyanide/0.1 M KCl. A negative feedback signal was obtained due to the hindered diffusion of ferrocyanide towards
PDF
Album
Full Research Paper
Published 14 Oct 2013

Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

  • Alexander Harder,
  • Mareike Dieding,
  • Volker Walhorn,
  • Sven Degenhard,
  • Andreas Brodehl,
  • Christina Wege,
  • Hendrik Milting and
  • Dario Anselmetti

Beilstein J. Nanotechnol. 2013, 4, 510–516, doi:10.3762/bjnano.4.60

Graphical Abstract
  • . Furthermore, the distance-control feedback loop of the probe can be used to gain topographical information as it is done in atomic force microscopy (AFM). Thus, SNOM generally allows the acquisition of both optical and topographical information. Various conceptual approaches have been reported: In fiber SNOM
PDF
Album
Full Research Paper
Published 11 Sep 2013

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

  • Alex Henning,
  • Gino Günzburger,
  • Res Jöhr,
  • Yossi Rosenwaks,
  • Biljana Bozic-Weber,
  • Catherine E. Housecroft,
  • Edwin C. Constable,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2013, 4, 418–428, doi:10.3762/bjnano.4.49

Graphical Abstract
  • using a bias voltage of Vdc = 0 V applied to the tip. The cantilever oscillation amplitude was kept constant by a feedback controller at a setpoint, Asp, of 20 nm rms that was pre adjusted to 75% of the free vibrational amplitude, A0 = 27 nm rms. The second scan was performed 20 nm above the previously
  • electrostatic force, Fes, was phase-adjusted and retrieved with a lock-in amplifier and subsequently nullified by the applied dc voltage in the Kelvin feedback. Cantilever bending and vibration were optically detected with an infrared laser (λ = 1300 nm, 1 mW, spot size 50 × 50 μm2) and a four-quadrant
PDF
Album
Full Research Paper
Published 01 Jul 2013

Ni nanocrystals on HOPG(0001): A scanning tunnelling microscope study

  • Michael Marz,
  • Keisuke Sagisaka and
  • Daisuke Fujita

Beilstein J. Nanotechnol. 2013, 4, 406–417, doi:10.3762/bjnano.4.48

Graphical Abstract
  • attractive force between tip and cluster overcomes the adhesive force of the Ni nanocrystal on the HOPG surface. For this purpose, the tip was first stabilized above the center of the targeted cluster, and then the current setpoint was increased to a value up to 10 nA while the z-feedback was kept enabled
  • installed to enhance the resolution) was gradually decreased with closed z-feedback loop. Since we used small bias values, we can assume that the distance depends linearly on the voltage. As soon as a jump in the current or z-feedback signal was observed, the bias was gradually increased again. Afterwards
  • , the usual tunnelling conditions were readjusted (V = 1.0 V, I = 0.2 nA), and the outcome of the pick-up attempt was checked with a topographic scan. In roughly 50% of the attempts the pick-up was successful. We point out that an instability in the z-feedback and current signal is always observed in a
PDF
Album
Full Research Paper
Published 28 Jun 2013

Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

  • Daniel Kiracofe,
  • Arvind Raman and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2013, 4, 385–393, doi:10.3762/bjnano.4.45

Graphical Abstract
  • Figure 4c and Figure 4d, which is exactly the trend noted in the experiments in Figure 3. To further explore this phenomenon, we perform a simulation in which the cantilever is tapping on a surface with the normal feedback controller on while the second eigenmode drive amplitude (and hence second
  • bistability by using frequency modulation, phase modulation or other newer feedback control schemes, such as drive modulation. From a theoretical point of view, more research is needed to understand the nature of the different states and exactly why the contrast should reverse. The fact that there is no
  • the experimental observations of Figure 2. Further, comparing (c) versus (d), drops as A2,init is raised. This matches the experimental observation in Figure 3. A simulation in which the second eigenmode drive amplitude is swept up and then down continuously. The feedback controller remains active so
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2013

Polynomial force approximations and multifrequency atomic force microscopy

  • Daniel Platz,
  • Daniel Forchheimer,
  • Erik A. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2013, 4, 352–360, doi:10.3762/bjnano.4.41

Graphical Abstract
  • complicated multifrequency tip motion. With spectral data, certain points on the tip–surface force curve will receive greater weight if the tip spends more time at these positions. On the FI(A) and FQ(A) curves the weight at each amplitude can be controlled by design. Furthermore, distortions due to feedback
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2013

Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates

  • Gabriele Fisichella,
  • Salvatore Di Franco,
  • Patrick Fiorenza,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Cristina Tudisco,
  • Guido G. Condorelli,
  • Nicolò Piluso,
  • Noemi Spartà,
  • Stella Lo Verso,
  • Corrado Accardi,
  • Cristina Tringali,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2013, 4, 234–242, doi:10.3762/bjnano.4.24

Graphical Abstract
  • . The torsion amplitude is used as the feedback signal to measure surface morphology. A dc bias was applied to a macroscopic metal contact deposited onto graphene, and the current locally injected from the nanometric conductive tip into graphene was probed by a high sensitivity (fA) current sensor
PDF
Album
Full Research Paper
Published 02 Apr 2013

Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM

  • Igor Beinik,
  • Markus Kratzer,
  • Astrid Wachauer,
  • Lin Wang,
  • Yuri P. Piryatinski,
  • Gerhard Brauer,
  • Xin Yi Chen,
  • Yuk Fan Hsu,
  • Aleksandra B. Djurišić and
  • Christian Teichert

Beilstein J. Nanotechnol. 2013, 4, 208–217, doi:10.3762/bjnano.4.21

Graphical Abstract
  • collimating lenses. A calibration curve, which accounts for both the transmittance of the optical system and the emission spectrum of the light source, was recorded and used for the correction of the photocurrent spectra. The illumination from the AFM feedback laser diode, which has a wavelength of ≈850 nm
PDF
Album
Full Research Paper
Published 21 Mar 2013
Graphical Abstract
  • the amplitude-modulation (AM) scheme while the second eigenmode was driven with a much smaller amplitude in open loop (OL, that is, only the first mode amplitude signal was used to control the tip–sample distance feedback loop. The second eigenmode drive signal had a constant amplitude and frequency
  • ]) or it can provide a signal with variable drive amplitude to maintain a constant oscillation amplitude of the cantilever eigenmode (accordingly denoted as constant amplitude (CA) mode [9]). The latter case is internally realized by running an additional feedback loop that controls the oscillation
  • tip–sample-distance feedback loop. These transient times scale as 2Q/ω0, with Q being the quality factor and ω0 the natural frequency [22]. Clearly, imaging becomes impractical when Q increases significantly (as in vacuum operations). In FM-AFM, this drawback is overcome by using the frequency shift
PDF
Album
Full Research Paper
Published 18 Mar 2013

High-resolution dynamic atomic force microscopy in liquids with different feedback architectures

  • John Melcher,
  • David Martínez-Martín,
  • Miriam Jaafar,
  • Julio Gómez-Herrero and
  • Arvind Raman

Beilstein J. Nanotechnol. 2013, 4, 153–163, doi:10.3762/bjnano.4.15

Graphical Abstract
  • forces can be remarkable similar. Furthermore, the reduction in noncontact forces and quality factors in liquids diminishes the role of feedback control in achieving high-resolution images. The theoretical findings are supported by atomic-resolution images of mica in water acquired with AM, FM and DAM
  • of imaging resolution and the role of feedback control in dAFM. Prior efforts to analyze imaging resolution in dAFM have typically focused on the small-amplitude limit in order to establish a relationship between various noise sources in the experimental setup and the minimum detectable gradient of
  • the tip–sample force [1][4][8][9]. However, the optimal imaging amplitude in FM has also been considered [10]. The role of feedback control in dAFM and its stability have been studied largely by using numerical simulations to solve complex systems of nonlinear, integro-differential equations governing
PDF
Album
Full Research Paper
Published 27 Feb 2013

Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime

  • Aditya Kumar,
  • Thorsten Staedler and
  • Xin Jiang

Beilstein J. Nanotechnol. 2013, 4, 66–71, doi:10.3762/bjnano.4.7

Graphical Abstract
  • detailed information about surface topography and surface roughness. The samples were imaged with commercial tips featuring a nominal tip radius of 10 nm in a feedback-controlled mode on all three axes. Five 8 × 8 μm2 images with a pixel resolution of 512 × 512 were taken at different surface positions on
PDF
Album
Full Research Paper
Published 28 Jan 2013

Interpreting motion and force for narrow-band intermodulation atomic force microscopy

  • Daniel Platz,
  • Daniel Forchheimer,
  • Erik A. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2013, 4, 45–56, doi:10.3762/bjnano.4.5

Graphical Abstract
  • slowly varied (frequency-shift–distance curves). Active feedback is used to adjust both the drive power and drive frequency, to keep the response amplitude and phase constant. The obtained frequency shifts and drive forces can then be converted into the force quadratures [38][39] so that the measurement
PDF
Album
Full Research Paper
Published 21 Jan 2013

Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

  • Jannis Lübbe,
  • Matthias Temmen,
  • Sebastian Rode,
  • Philipp Rahe,
  • Angelika Kühnle and
  • Michael Reichling

Beilstein J. Nanotechnol. 2013, 4, 32–44, doi:10.3762/bjnano.4.4

Graphical Abstract
  • system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth. Keywords: Cantilever; feedback loop; filter; noncontact atomic force
  • by the amplitude feedback loop. Signal processing in NC-AFM involves the demodulation of the periodic cantilever-displacement signal Vz(t) as well as filtering in the frequency domain to yield the frequency shift Δf(t) carrying the information on the tip–surface interaction [1]. Demodulation is
  • instabilities arising from the interaction of the force microscopy tip with the surface as well as arising from the feedback loops stabilising the cantilever oscillation amplitude and the tip–surface distance [5]. Here, we investigate noise for the case of negligible tip–surface interaction and discuss the
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2013

Characterization of the mechanical properties of qPlus sensors

  • Jan Berger,
  • Martin Švec,
  • Martin Müller,
  • Martin Ledinský,
  • Antonín Fejfar,
  • Pavel Jelínek and
  • Zsolt Majzik

Beilstein J. Nanotechnol. 2013, 4, 1–9, doi:10.3762/bjnano.4.1

Graphical Abstract
  • routinely used nowadays as a standard technique to characterize and modify objects at the atomic scale. However, its application is limited only to conductive samples as the tunneling current flowing between a probe and a sample is employed as the feedback signal. This limitation was surpassed by AFM
  • by two electrodes of the fork during its sinusoidal motion. OP 111 operational amplifiers (OPA) in a TO 99 package were used as IVCs with 100 MΩ feedback resistors. In order to gain the maximum performance of the device, the inputs of amplifiers were brought as close as possible to the outputs of the
  • sensor: the lengths of the connecting wires were about 1 cm only. Furthermore, the SMD-packed feedback resistor was mounted directly between the input and the output legs minimizing the length of wiring to a few millimetres. By this construction the input and the parasitic capacitance of the feedback
PDF
Album
Full Research Paper
Published 02 Jan 2013
Other Beilstein-Institut Open Science Activities