Search results

Search for "polymers" in Full Text gives 524 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Processing nanoporous organic polymers in liquid amines

  • Jeehye Byun,
  • Damien Thirion and
  • Cafer T. Yavuz

Beilstein J. Nanotechnol. 2019, 10, 1844–1850, doi:10.3762/bjnano.10.179

Graphical Abstract
  • Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea 10.3762/bjnano.10.179 Abstract Rigid network structures of nanoporous organic polymers provide
  • high porosity, which is beneficial for applications such as gas sorption, gas separation, heterogeneous (photo)catalysis, sensing, and (opto)electronics. However, the network structures are practically insoluble. Thus, the processing of nanoporous polymers into nanoparticles or films remains
  • challenging. Herein, we report that nanoporous polymers made via a Knoevenagel-like condensation can be easily processed into nanoparticles (115.7 ± 40.8 nm) or a flawless film by using liquid amines as a solvent at elevated temperatures. FTIR spectra revealed that the carboxyl groups in the nanoporous
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2019

Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints

  • Elvira Rozhina,
  • Ilnur Ishmukhametov,
  • Svetlana Batasheva,
  • Farida Akhatova and
  • Rawil Fakhrullin

Beilstein J. Nanotechnol. 2019, 10, 1818–1825, doi:10.3762/bjnano.10.176

Graphical Abstract
  • -assembly of miniature building blocks to form biomimetic soft or rigid shells to encapsulate live cells rendering them with additional functionalities [7]. In general, there are three principal routes to engineer the cell walls or membranes of live cells: 1) deposition of charged or neutral polymers (that
  • can be doped with nanoscale inorganic particles) [8][9]; 2) direct anchoring of inorganic nanoparticles to cell surfaces [10][11]; 3) fabrication of “hard” inorganic shells mimicking natural eggshells [12]. Synthetic polymers can be grafted onto the surface of individual cells using atom-transfer
PDF
Album
Letter
Published 04 Sep 2019

Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents

  • Yuuki Hata,
  • Yuka Fukaya,
  • Toshiki Sawada,
  • Masahito Nishiura and
  • Takeshi Serizawa

Beilstein J. Nanotechnol. 2019, 10, 1778–1788, doi:10.3762/bjnano.10.173

Graphical Abstract
  • , introducing terminal functional groups, and using additives. Among them, the strategy using additives has the advantages of versatility and convenience. Polymers [43][44] and colloidal particles [45] were shown to be useful additives. However, the potential of small-molecule additives for controlling the
  • oligomerization-induced self-assembly of cellulose oligomers has yet to be investigated systematically, even though many more candidates are available for small molecules than for polymers and colloidal particles. Herein, we show the formation of nanoribbon networks composed of crystalline cellulose oligomers via
PDF
Album
Correction
Full Research Paper
Published 26 Aug 2019

Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer films

  • Corentin Guyot,
  • Philippe Vandestrick,
  • Ingrid Marenne,
  • Olivier Deparis and
  • Michel Voué

Beilstein J. Nanotechnol. 2019, 10, 1768–1777, doi:10.3762/bjnano.10.172

Graphical Abstract
  • components as a reducing agent for the metal salt. We therefore need a matrix that plays the role of reducing agent but also contributes to the stabilization of the NPs. Polymers like poly(vinylpyrrolidone) (PVP) or polyvinyl alcohol (PVA) are good candidates for this purpose. The self-stabilization process
  • the sample temperature reaches Tg, the glass transition temperature of the polymer. For bulk PVA, Tg equals 85 °C [32]. As already reported for other polymers, Tg is also a function of the film thickness and differs from the bulk value of Tg [33]. It can also be modified by doping. Since the
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • its higher photocatalytic nature than rutile or brookite structures [39][40][41]. The small-angle X-ray scattering (SAXS) technique is a powerful technique that is based on the spatial fluctuations of the electronic density of the material that allows for the measurement of polymers, alloys, and
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Precise local control of liquid crystal pretilt on polymer layers by focused ion beam nanopatterning

  • Maxim V. Gorkunov,
  • Irina V. Kasyanova,
  • Vladimir V. Artemov,
  • Alena V. Mamonova and
  • Serguei P. Palto

Beilstein J. Nanotechnol. 2019, 10, 1691–1697, doi:10.3762/bjnano.10.164

Graphical Abstract
  • techniques such as patterning with nanogrooves [13][14][15] and nanoslits [16], ion-beam irradiation of specific inorganic [17] and polymer [18] substrates, subjecting of photo-controlled aligning polymers to near-threshold doses of ultraviolet radiation [19], formation of surface microdomains from
  • segregating mixtures of vertically and planar aligning polymers [20][21], or stacking of nanolayers of such polymers [22]. The techniques yield homogeneous pretilt angles sufficient for conventional flat-display applications but are very inconvenient for establishing spatially inhomogeneous states. Being also
PDF
Album
Full Research Paper
Published 12 Aug 2019

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • value. This procedure and other protocols of synthesis together with the possibility to stabilize solids involving a large variety of metal ions have provided a large variety of LDH compounds of interest in numerous applications as adsorbents of anionic pollutants, catalysts, additive of polymers, as
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Nanoporous smartPearls for dermal application – Identification of optimal silica types and a scalable production process as prerequisites for marketed products

  • David Hespeler,
  • Sanaa El Nomeiri,
  • Jonas Kaltenbach and
  • Rainer H. Müller

Beilstein J. Nanotechnol. 2019, 10, 1666–1678, doi:10.3762/bjnano.10.162

Graphical Abstract
  • systems. A simple but very effective approach is to increase the saturation solubility of these active agents. This leads to an increased concentration gradient between the formulation and skin, Cs–Cskin, and thus to an increased diffusional flux into the skin. Moreover, using complexes with polymers or
PDF
Album
Full Research Paper
Published 08 Aug 2019

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • increasing middle layer thickness and then decreases slightly after the inflection point is reached, which is also relevant with the substrate effect. Second, the influence of the mechanical properties of each layer was additionally investigated. Polymers including PMMA, HDPE, PS, PC and PI were used for the
PDF
Album
Full Research Paper
Published 07 Aug 2019

Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications

  • Christina Schneidermann,
  • Pascal Otto,
  • Desirée Leistenschneider,
  • Sven Grätz,
  • Claudia Eßbach and
  • Lars Borchardt

Beilstein J. Nanotechnol. 2019, 10, 1618–1627, doi:10.3762/bjnano.10.157

Graphical Abstract
  • are well developed [6][7][8][9]. Commonly, 10–30% of the plastic waste is recycled by manufacturing new plastic products. Another 10–25% is used for energy recovery as fuel for industrial processes. However, 55–80% still end up in landfills or even in the environment [3][4][10]. Some of the polymers
  • that accumulate as plastic waste are poorly recyclable because of low recycling yields and insufficient properties of the recycled polymers in terms of elasticity, rheology, and thermal and mechanical stability [5]. Amongst them is PU, a thermosetting polymer with a cross-linked structure [5][11][12
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • –Blodgett method, liquid–liquid interfacial precipitation, instructed assembly, and layer-by-layer assembly to give low-dimensional materials including nanowires, nanowhiskers, nanosheets, cubic objects, molecular patterns, supramolecular polymers, metal-organic frameworks and covalent organic frameworks
  • ., crystallinity controlled two-dimensional patterns based on guanidinium/carboxylate molecular recognition [196] and the two-dimensional assembly of one-dimensional supramolecular polymers formed between alkylated melamine and aqueous barbiturate [197] have been also accomplished. Oishi and co-workers utilized
  • and co-workers demonstrated two-dimensional co-patterned structures of carbazole-based conductive polymers and gold by nanosphere lithography [217]. Huang and co-workers proposed a high-yield LB method for nanoparticle films through electrospray techniques to significantly reduce the spreading of
PDF
Album
Review
Published 30 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • e-beam. A higher dose led to a higher local temperature, which implies an increased formation of Au alloy and rims. The comparable so-called “Marangoni effect” was observed in laser-irradiated polymers as described by Lyutakov and co-workers [61]. The NIs formed on the thinnest Au (12 nm) exhibited
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • properties, the surface displacement map in CR mode can qualitatively reflect the elastic modulus with higher sensitivity as compared to other dynamic modes [14]. The FMM and CR AFM techniques are widely used for mapping the local, nanoscale elastic properties of polymers, rubber, composites, and biological
PDF
Album
Full Research Paper
Published 03 Jul 2019

Janus-micromotor-based on–off luminescence sensor for active TNT detection

  • Ye Yuan,
  • Changyong Gao,
  • Daolin Wang,
  • Chang Zhou,
  • Baohua Zhu and
  • Qiang He

Beilstein J. Nanotechnol. 2019, 10, 1324–1331, doi:10.3762/bjnano.10.131

Graphical Abstract
  • ], surface plasmon resonance [10], molecularly imprinted polymers [6], and fluorescence polarization [11] have been proposed to detect TNT. However, most of these techniques have major limitations such as cumbersome pretreatment, complicated operation, long detection time and high cost. In recent years
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • different properties will determine a functional set of predetermined utility with SEP maintaining stable colloidal dispersions of different nanoparticles and polymers in water. Keywords: bionanocomposites; carbon nanostructures; electrochemical devices; halloysite nanotubes; sepiolite; Introduction In
  • ]. Interestingly, HNTs are known to maintain their ability to act as nanocontainers even when dispersed in a multicomponent system included in polymer matrices [22]. It has been observed that positively charged polymers such as chitosan (CHI) can electrostatically incorporate the previously loaded halloysite
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • extensively and deepened systematically by K. Ariga and his colleagues [4][5][6][7][8][9][10][11][12][13][14]. Various functional units ranging from atoms and molecules to polymers, biomacromolecules and nanoscale objects are employed for the construction of specific nanoarchitectures by various chemical
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • -physical and morphological properties of this class of porous organic polymers. In fact, their gas adsorption capacity and their performance in a variety of catalytic transformations can be modulated through an appropriate selection of the building blocks. In this contribution, a set of five CTFs (CTF1–5
  • them highly attractive samples for carbon capture and sequestration (CCS) applications. Indeed, selected polymers from this series rank among the CTFs with the highest CO2 uptake at ambient pressure reported so far in the literature (up to 5.23 and 3.83 mmol·g−1 at 273 and 298 K, respectively
  • therefore covers a wide range of applications in (photo-/electro-)catalysis, gas storage and separation technologies as well as energy storage devices. Among nanocarbons, (nano)porous organic polymers (POPs) have gained a significant popularity because of their unique features [4][5][6][7][8]. Indeed, the
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process

  • Malek Bibani,
  • Romain Breitwieser,
  • Alex Aubert,
  • Vincent Loyau,
  • Silvana Mercone,
  • Souad Ammar and
  • Fayna Mammeri

Beilstein J. Nanotechnol. 2019, 10, 1166–1176, doi:10.3762/bjnano.10.116

Graphical Abstract
  • magnetostrictive, and the second one being sub-stoichiometric and presenting a higher magnetization, that are appropriate to be used as ferromagnetic building blocks in nanostructured magnetoelectric materials, particularly materials based on polymers. We show that the polyol solvent and the reaction time are two
  • piezoelectric polymers. Keywords: cobalt ferrite; magnetocrystalline anisotropy; magnetostriction; nanoparticle; non-stoichiometry; polyol process; Introduction Recently, extrinsically (or artificially) magnetoelectric (ME) multiferroic (MF) materials have been seriously investigated for many applications in
  • functionalized by coupling agents such as phosphonic acids to be introduced in polymers [32][33]. Experimental Synthesis of the nanoparticles The synthesis of the CoxFe3−xO4 nanoparticles (NPs) was carried out using the polyol process [22], starting from iron and cobalt acetates, Fe(CH3COO)2 and Co(CH3COO)2·4H2O
PDF
Album
Full Research Paper
Published 04 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • electronic characteristics, or by adding conducting polymers with different degrees of transparency, or black electronic collectors such as graphene and CNT components to the nanoarchitectured clay-based materials. Photosensitization using organic components is a potential way to improve the photo-efficiency
PDF
Album
Review
Published 31 May 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • ][10][11]. To enhance the antioxidant properties of inorganic particles, they should be surface-modified with antioxidants or antioxidant-modified polymers. These types of polymers include chitosan, which is a product of chitin deacetylation and is composed of D-glucosamine and N-acetyl-D-glucosamine
  • modified with polymers via a layer-by-layer (LbL) technique [17]. Two naturally derived polymers, namely, anionic heparin and cationic chitosan, were used as nanoparticle coatings, and three phenolic compounds, including hydroquinone, phloroglucinol, and gallic acid, differing in the number of hydroxy
  • values of the latter polymers were ca. 35% lower than that of precursor chitosan, which indicated a lower polydispersity of the modified chitosans (Table 1). Free radicals had two functions in the modification of chitosan: (i) the degradation of the polymer by chain scission and (ii) the creation of
PDF
Album
Full Research Paper
Published 20 May 2019

Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

  • Malwina Liszewska,
  • Bogusław Budner,
  • Małgorzata Norek,
  • Bartłomiej J. Jankiewicz and
  • Piotr Nyga

Beilstein J. Nanotechnol. 2019, 10, 1048–1055, doi:10.3762/bjnano.10.105

Graphical Abstract
  • -structured surfaces made of glass [25][26], GaN [27][28][29], Si [30], TiO2 [31], Al2O3 [32], Ti [33], polymers [34], or planar surfaces coated with nano/microspheres resulting in metal film on nanospheres MFON [35][36], and Au nanocrescents on a monolayer of polystyrene nanospheres [37]. Additionally
PDF
Album
Full Research Paper
Published 15 May 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • restricts its use for biomedical applications. Scientists have overcome this challenge through the oxidation of graphene by an improved Hummer’s method [3]. Graphene oxide (GO), due to its hydrophilic nature, can host a large number of biocompatible polymers, such as chitosan [4], polyethylene glycol (PEG
  • activity of GO [17]. Moreover, GO-based sensors have been used for the detection of neonicotinoids [18], tyrosine [19], ascorbic acid, dopamine, uric acid [20], 4-nitrophenol [21], and glucose [22]. Among all biocompatible polymers, PEG has been extensively used as a GO cover. Feng et al. used PEG and PEI
PDF
Album
Full Research Paper
Published 18 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • -step functionality. This ability is demonstrated here with two polymers grafted onto the nanocomposite surface, and other functionalities could be additional cancer therapy agents for achieving increased therapeutic activity. Keywords: cerium complex; magnetic nanoparticles; photothermal therapy
  • carbon equivalent and found the toxicity of the former to be lower [23]. Wu et al. produced biocompatible MoS2 nanoparticles by a pulsed laser ablation technique [24]. Examples of medical applications with TMDC nanostructures are their addition as reinforcing agents to polymers for bone-tissue
  • accumulation effect, but parameters such as nanostructure shape and surface charge are extremely important [33]. A wide range of nanomaterials has been studied for cancer PTT to now, from organic conjugated polymers [34][35], through carbon-based nanomaterials [36][37], to inorganic nanostructures. Within the
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • proportional with the pore size of the active electrode materials [14]. The synthesis of carbon materials with very high surface area and appropriate pore size suitable for supercapacitor electrodes is a major challenge. It has been shown that this could be achieved by addition of sacrificial polymers, which
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Features and advantages of flexible silicon nanowires for SERS applications

  • Hrvoje Gebavi,
  • Vlatko Gašparić,
  • Dubravko Risović,
  • Nikola Baran,
  • Paweł Henryk Albrycht and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2019, 10, 725–734, doi:10.3762/bjnano.10.72

Graphical Abstract
  • economical for synthesis, but suffer from the lack of reproducibility due to unpredictable aggregation. Thus, researchers have implemented various ways to control the aggregation, such as bifunctional linker molecules, stimuli-responsive polymers, short single-stranded DNA chains or aptamers. Optimized solid
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2019
Other Beilstein-Institut Open Science Activities