Search results

Search for "potential" in Full Text gives 1729 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • synthesized by green methods and, in some cases, are combined with other metals [2]. AgNPs have potential uses in biomedicine. Several authors have reported the ability of AgNPs to act as antibacterial [3][4] or as cytotoxic agents in certain cancer cell lines [5][6]. This type of application has attracted a
  • , agricultural residues, such as fruit peels, have the potential to be used for the development of nanoparticles [10][11][12][13]. Pineapple peel has also been valued as a good source of silver salt-reducing compounds. Pineapple peel extracts have been reported to contain polyphenols such as gallic acid
  • , catechin, epicatechin, and ferulic acid [14]. These metabolites may be potential reducing agents for the formation of AgNPs. Until now, some studies have been reported on the use of pineapple peel for the generation of AgNPs [15][16][17][18]. For example, Agnihotri et al. [15] reported photocatalytic and
PDF
Album
Full Research Paper
Published 13 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • ]. One of the main advantages of the cobalt-based battery is its high theoretical capacity of 274 mAh·g−1, the high working potential of 4.0 V vs Li/Li+, and the high energy density of approximately 500 Wh·kg−1 [5][6][7][8][9]. The complete removal of lithium ions from the LiCoO2 structure is prevented
  • by the phase transition from a hexagonal structure to a monoclinic structure, which occurs during cathode charging at a potential of approximately 4.2 V [5][6][7][8][9]. A decrease in capacity (approx. 50%) is observed during the cycling charging–discharging processes, caused by the dissolution of
PDF
Album
Full Research Paper
Published 07 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • in the range of 1 × 10−11–5 × 10−6 M with a limit of detection of 0.85 × 10−12 M. This indicates that the proposed biosensor has the potential to be applied for the detection of real turtle species. Keywords: box turtle; DNA detection; electrochemical DNA biosensor; nanocomposite; screen-printed
  • reproducibility in real samples is always challenging compared to those of laboratory results in PB. Hence, it is still one of the potential barriers to the commercialization of electrochemical biosensors. From that standpoint, there is still room for advancement to reduce the drawbacks associated with
  • analysed with a Metrohm autolab potentiostat/galvanostat utilising the NOVA 2.1.4 software. The modified SPCE was electrochemically characterised using CV, DPV, and EIS at a scan rate of 100 mV/s vs Ag/AgCl as the reference electrode in the potential range of −0.1 to 0.6 V. A solution of 2 mM potassium
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Coherent amplification of radiation from two phase-locked Josephson junction arrays

  • Mikhail A. Galin,
  • Vladimir M. Krasnov,
  • Ilya A. Shereshevsky,
  • Nadezhda K. Vdovicheva and
  • Vladislav V. Kurin

Beilstein J. Nanotechnol. 2022, 13, 1445–1457, doi:10.3762/bjnano.13.119

Graphical Abstract
  • voltage. Therefore, fJ can be up to about 1 THz for low-Tc JJs [1] and can reach tens of terahertz for high-Tc JJs [2][3]. Thus, a JJ has the potential to be the basis of compact, continuous-wave and tunable terahertz generators, which would facilitate solving the problem of so-called “THz gap” [4]. A
PDF
Album
Full Research Paper
Published 06 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • mean particle size and zeta potential of the samples in phosphate-buffered saline (PBS) or in RPMI-1640 medium with 10% FBS over a period of 7 days. Samples were collected at specific time points to monitor the changes in particle size and zeta potential. In vitro drug release properties of AB-LNPs The
  • laser-responsive release properties. In 4T1 cancer cells, AB-LNPs showed enhanced cellular uptake efficiency in comparison to BDP and synergistic photothermal effects. The simple and adaptive nanoparticle design may have great potential for the treatment of cancer and other diseases. The
  • properties of AB-LNPs. Changes of (a) particle size and (b) zeta potential of AB-LNPs in PBS or RPMI-1640 medium supplemented with 10% FBS over a period of 7 days. (c) Drug release profiles of BDP from AB-LNPs in PBS with pH 5.5 and 7.4 with or without exposure to 680 nm laser irradiation (0.5 W/cm2, 1 min
PDF
Album
Full Research Paper
Published 02 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • Usadel equation has the following form [93]: Here, Ds is the diffusion coefficient in the superconductor, and Δ(x) is the superconducting order parameter (pair potential). From the Usadel equations, it can be shown that there is a symmetry relation between θ↑ and θ↓: θ↑(E) = (−E), where E is the energy
  • boundary Nf(E) is normalized to the DOS in the normal state and can be written as where Nf↑(↓)(E) are the spin-resolved DOS written in terms of the spectral angle θ, To calculate Equation 10, we use a self-consistent two-step iterative method. In the first step, we calculate the pair potential coordinate
  • = αso = 0 and keeping the solution to the lowest order, the equation for θf takes the form where sinθs = Δ0 / and cosθs = ωn/ Here, Δ0 is the bulk value of the pair potential. The equation above can be used for further semi-analytical calculations of the DOS for the case of a thin F layer with the
PDF
Album
Full Research Paper
Published 01 Dec 2022

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • were perturbed to convert an infinite Q-factor (ideal BIC) into a finite but high Q-factor (QBIC), which exhibited a dual-band high-Q resonance when used for optical sensing, allowing for more sensitive detection. The designed resonator has potential prospects for applications such as multi-wavelength
PDF
Album
Full Research Paper
Published 25 Nov 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • -PLGA NPs had positive surface charge with CS coating. The formulations have the potential to deliver the encapsulated drug to the bowel according to the in vitro release studies in three different simulated GIT fluids for approximately 72 h. Mucin interaction and penetration into the artificial mucus
  • charged mucin, decreased pH value, and increased temperature, may provide design clues for mucoadhesive polymeric nanoparticles that have a potential to exhibit higher drug release or help to alleviate colorectal tumor in colon region [11][19][20]. PLGA is a physiologically biocompatible and biodegradable
  • potential of blank and DCX-loaded NPs are presented in Table 1. The mean particle size of the PLGA NPs was found to be in the range of 247.5–309.6 nm and the PDI ranged from 0.241 to 0.362, which is in the acceptable range (PDI < 0.4) for nanoparticular drug delivery systems [41]. The zeta potentials of
PDF
Album
Full Research Paper
Published 23 Nov 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • approaches to make it as a light-driven nanomaterial owing to its potential capabilities. The light-driven ability of HBN can be achieved through multiple strategies. These include varying the structural morphology, heterojunction formation with a suitable photocatalyst, and doping with heteroatoms. The
  • percentage of carbon introduced. This demonstrates the potential of HBN to be used as a photocatalytic material. However the studies in the sense of exploring its photocatalytic ablity intented for environmental applications is very limited [15][16][17]. This has motivated us to extend our study on the
  • . The mechanistic insights on the transfer and separation of charge carriers along with the photodegradation performance and reactive oxygen species (ROS) trapping have been enunciated in detail. The apparent quantum efficiency (AQE) further substantiated the potential of MBN to be used as a visible
PDF
Album
Full Research Paper
Published 22 Nov 2022

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • Holzgerlingen, Germany 10.3762/bjnano.13.113 Abstract Superhydrophobic surfaces are well known for most different functions in plants, animals, and thus for biomimetic technical applications. Beside the Lotus Effect, one of their features with great technical, economic and ecologic potential is the Salvinia
  • chemistry of the hierarchically structured surfaces water cannot penetrate and air remains trapped in between the structures [1], which is indicated by a silvery shine of the submerged surface (See Figure 1a). For technical applications, the Salvinia effect bears an immense potential, as air layers kept
  • liquids flow over solid surfaces [29][30]. The highest economic and ecological potential for this technology is the shipping industry [31]. The optimal parameters for stable air retention have been previously investigated [1][32] and theoretical calculations have been performed [33][34][35]. Four criteria
PDF
Album
Full Research Paper
Published 21 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • -inflammatory, and anticancer). The physicochemical characterization of the supramolecular assembly (nanoGSP) in terms of size and colloidal stability was investigated by complementary spectroscopic techniques, such as UV–vis, ζ-potential, and dynamic light scattering (DLS). Furthermore, the role of PolyCD
  • , Figure 1) achieved by supramolecular assembly of the components as well as their physicochemical characterization in terms of size and colloidal stability. The drug binding ability of nanoGS with Pent has been investigated by complementary spectroscopic techniques such as UV–vis, zeta potential
  • -potential), and dynamic light scattering (DLS). Experimental data suggested a multiple set of interactions between Pent and nanoGS that involves mainly the CD cavities. The biological profile of nanoG, nanoGS, and nanoGSP has been evaluated in terms of antileishmanial activity and cytotoxicity by in vitro
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • studied. Subsequently, more water-repellent biological structures were identified, with additional features and, therefore, higher and novel application potential [2][3]. For instance, various biological surfaces were described that are not only superhydrophobic but are additionally able to keep
  • water spider or the floating fern Salvinia molesta (and other Salvinia species), and their surfaces have an appearance similar to that of terrycloth. Both the Lotus effect and the surfaces with stay-dry-under-water potential became – after their introduction into biomimetics – popular items for the top
  • potential is identified and described, biological systems migrate from the bottom-up realm to the top-down portfolio, together with their originally recognised application potential. Tapping this top-down portfolio is an attractive modus operandi because it appears to guarantee a straightforward and swift
PDF
Album
Perspective
Published 17 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • . Hence, they have application potential in optoelectronic devices. Herein, we synthesized, for the first time, Ag, Zn, Ga, S, and Se-based alloyed QDs (AZGSSe QDs) and investigated the optoelectric and morphological properties. Due to the near-infrared (NIR) light absorption, the QDs were used as
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • capabilities, as illustrated in Figure 2, since their VB potential is much higher than the oxidation potential of H2O, that is, 0.82 V vs NHE. Unfortunately, due to inadequate CB potential energy, most reduction processes, such as CO2 reduction, N2 fixation, and H2 creation, cannot be catalyzed with Bi-based
  • nanomaterials. However, a few Bi-based semiconductor photocatalysts, such as Bi2S3, have a more substantial negative CB potential, making reduction reactions possible [34][48][49]. However, in real applications, the usefulness of Bi2S3 is limited because of the quick recombination of electrons and holes. New
  • generation of Bi2WO6. It has been observed that the newly generated Bi2WO6 has a greater BET surface area and superior charge transfer kinetics. These properties point to an increase in photocatalytic activity. Other Bi-based hollow hierarchical structures, such as BiVO4, have the potential to be synthesized
PDF
Album
Review
Published 11 Nov 2022

Bending and punching characteristics of aluminum sheets using the quasi-continuum method

  • Man-Ping Chang,
  • Shang-Jui Lin and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2022, 13, 1303–1315, doi:10.3762/bjnano.13.108

Graphical Abstract
  • friction behaviors of different models [52]. Moreover, the QC method based on the embedded-atom method (EAM) potential was adopted to observe the fatigue crack growth and expansion characteristics of single-crystal metals under cyclic loading processes. The results showed that after compressive or shear
PDF
Album
Full Research Paper
Published 10 Nov 2022

Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko)

  • Anthony J. Cobos and
  • Timothy E. Higham

Beilstein J. Nanotechnol. 2022, 13, 1292–1302, doi:10.3762/bjnano.13.107

Graphical Abstract
  • regions of a tree. Future field observations that determine the potential for ontogenetic habitat shifts are needed. Additionally, an ecomechanical model [55], incorporating contact area information from surfaces in nature, would help to understand the mechanisms underlying any shifts. Future directions
  • study, only SVL was measured given the potential issues during the preservation process. We used digital calipers (Mitutoyo Absolute) to the nearest 0.1 mm. We used these individuals to measure the fine scale adhesive structures of Gekko gecko. The toe pad of the longest digit (digit IV) was first
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • these electrical properties with the facile synthesis of one-dimensional nanostructures may bring potential applications of this material in nanoscale optoelectronic integrated devices. However, only a few works have been dedicated to studying the electrical transport in Te-based one-dimensional
  • ionization energy of the defects found on these nanostructures also favors the control of doping and, consequently, the electrical properties of the nanowires. These superior quality transport properties demonstrate the potential use of t-Te roll-like nanostructures for electronic device applications. (a–c
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • molecules demonstrates the resolution of these nanotube tips and the potential to elucidate the structural features of biological specimens. The method involves the growth, purification, and movement of carbon nanotubes into a cartridge and, finally, the transfer of the carbon nanotubes to the tip under an
  • , such as copper, silver, platinum, etc. Thus, it is also possible to prepare electrochemical colloidal probes (eCPs) with other metals. eCPs under electrochemical control of colloidal probes have potential in various research areas such as adhesion science, tribology or long-range interactions. eCPs
  • combine the versatility of electrochemistry and CP technology. They are more accessible in terms of samples, either as a second electrode under open circuit conditions, under double constant potential control or as an insulating surface. In the future, there is excellent scope for eCPs in applications
PDF
Album
Review
Published 03 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • polymeric nanofur [16]. Its surface is covered with many tiny, hair-like structures and has a high potential for up-scaling because it can be produced with minimal, very simple and cost-effective tools and molds [17]. On the lab scale, the fabrication of nanofur can be easily achieved with sand-blasted
  • potential to be upscaled to industrial standards by utilizing wider rollers in dedicated calenders and, to some extent, by increasing conveying speed and temperature of the roller. The most important parameters for the successful large-scale fabrication of thin nanofur, that is, gap size and roller
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

A super-oscillatory step-zoom metalens for visible light

  • Yi Zhou,
  • Chao Yan,
  • Peng Tian,
  • Zhu Li,
  • Yu He,
  • Bin Fan,
  • Zhiyong Wang,
  • Yao Deng and
  • Dongliang Tang

Beilstein J. Nanotechnol. 2022, 13, 1220–1227, doi:10.3762/bjnano.13.101

Graphical Abstract
  • two focal lengths within a certain field of view. The designed device consists of nanopillars with high efficiency of up to 80%, and the super-resolution focusing with 0.84 times of diffraction limit is verified by the full-wave simulation. The proposed method bears the potential to become a useful
  • property bears a great potential to applied in super-resolution microscopic imaging system. Design of the Super-Oscillatory Zoom Lens Similar to previous works [24][25][26], our proposed SSL can also be designed in two steps: first, a double-layer step-zoom metalens with diffraction-limited imaging
  • potential applications in the field of super-resolution microscopic imaging and optical precision machining. The layout of the double-layer step-zoom metalens. Phase profiles of the front and rear metasurfaces for (a) short and (b) long focal lengths. (a) Schematic of a TiO2 rectangular nanopillar. (b
PDF
Album
Full Research Paper
Published 28 Oct 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • intensive attention in various applications and also show great potential for selective separation and sensing applications [55]. Through adjusting building blockings, sensing hosts of supermolecular structures with different channel sizes, shapes, and functional sites could be fabricated, which provides
  • generated by polypyrrole (PPy) and Trp [127]. Intrinsic chiral metal crystals Until relatively recently, metals were ignored as potential substrates for asymmetric surface chemistry since metals always show highly symmetric and achiral bulk structures with unexposed chiral surfaces [128][129]. Sykes and co
  • strengthened. This work presented the great potential of bare metal surfaces as an effective platform for chirality detection. Metals are not only more stable than organic materials in various usage conditions, but also have excellent optical, electrical, and magnetic properties. They may facilitate the design
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • the application status and further potential of MEG devices are discussed in this review. It is expected that this review may provide valuable knowledge for future MEG research. Keywords: electric double layer; energy; moist-electric generators; nanoarchitectonics; Review 1 Introduction The use of
  • investigated electro-osmosis in tubes and provided a qualitative explanation of the mechanism. In 1861, Georg Quincke measured a potential difference between the two ends of the channels when water flowed in pipe channels, which implies that the streaming potential may be converted to electric power [5][6
  • to the surface charges. When the liquid moves in the microchannel, it will drag the diffusion layer ions to form a flowing current, thus creating a potential difference, namely the flowing potential between the two ends of the channel. In nanochannels, approximating the channel geometry to be
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • the manuscript, the most important manufacturing technologies, microneedle classification, and the research studies related to ophthalmic application of microneedles are presented. Finally, the most important advantages and drawbacks, as well as potential challenges related to the unique anatomy and
  • represent an obvious alternative to the oral forms, which have many limitations such as low bioavailability due to hepatic circulation and potential food interactions, delayed onset of action, and systemic side-effects [34][35][36]. In addition, oral or intravenous administration require the use of higher
  • [111][112]. Another application for which MNs have great potential is vaccine delivery [113][114][115][116]. The use of MNs in ophthalmology can still be considered as a fledgling area, however, with great potential but also many unknowns. The presented review summarizes the current data on ophthalmic
PDF
Album
Review
Published 24 Oct 2022

Nonlinear features of the superconductor–ferromagnet–superconductor φ0 Josephson junction in the ferromagnetic resonance region

  • Aliasghar Janalizadeh,
  • Ilhom R. Rahmonov,
  • Sara A. Abdelmoneim,
  • Yury M. Shukrinov and
  • Mohammad R. Kolahchi

Beilstein J. Nanotechnol. 2022, 13, 1155–1166, doi:10.3762/bjnano.13.97

Graphical Abstract
  • ], where it is assumed that the gradient of the spin–orbit potential is along the easy axis of magnetization taken to be along . In this case the total energy of the system can be written as where φ is the phase difference between the superconductors across the junction, I is the external current, Es(φ,φ0
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • simple way to synthesize photocatalytic heterojunction materials with high reusability and the potential of heterojunction photocatalysts in the field of environmental remediation. Keywords: g-C3N4; MgO; nitric oxide; photocatalyst; visible light; Introduction The rapid development of industrialization
  • absorbs visible light due to its small bandgap below 2.7 eV. Because of this, it has been consistently regarded as a catalyst with excellent optical properties [14][15]. Unfortunately, its narrow bandgap leads to rapid recombination of electron–hole (e−–h+) pairs, and the valence band potential of g-C3N4
  • redox potential by coupling two or more semiconductors [23][24], such as Bi2MoO6-based [25][26][27][28][29], BiOCl-based [30][31], g-C3N4-based [32][33][34], ZnO-based [35][36][37], TiO2-based [38][39], and MgO-based heterostructured photocatalysts [40]. Among these, the combination of MgO and g-C3N4
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022
Other Beilstein-Institut Open Science Activities