Search results

Search for "Fe3O4" in Full Text gives 120 result(s) in Beilstein Journal of Nanotechnology.

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • efficacy of TiO2 under visible or solar-simulated light, retrieving the synthesized small particles poses new challenges. Researchers have recently synthesized heterojunctions using TiO2 and magnetic particles such as α-Fe2O3 and Fe3O4 in order to solve the problem of recovering particles. They
  • 4.1, and UV-A irradiation of 60 W), the TiO2/GO/chitosan photocatalyst exhibited a prominent degradation efficiency of 95.34%. They also reported in another article that the SWCNT/ZnO/Fe3O4 combination exhibited a CFX decomposition efficiency of 94.19% at pH 5.93, 22.76 ppm CFX, and 0.46 g/L
  • electron–hole pairs and powerful redox capability. Higher photoactivity was also observed for other heterostructures such as NiFe2O4/Bi2O3 [87], Fe3O4@Bi2O3–RGO [88], Bi2O3/(BiO)2CO3 [89]. Bismuth oxyhalides (BiOX) are renowned as photocatalysts because of their distinctive optical and electrical
PDF
Album
Review
Published 25 Feb 2025

Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster

  • Joel Antúnez-García,
  • Roberto Núñez-González,
  • Vitalii Petranovskii,
  • H’Linh Hmok,
  • Armando Reyes-Serrato,
  • Fabian N. Murrieta-Rico,
  • Mufei Xiao and
  • Jonathan Zamora

Beilstein J. Nanotechnol. 2025, 16, 44–53, doi:10.3762/bjnano.16.5

Graphical Abstract
  • a = b = c = 17.179 Å and α = β = γ = 60°, described by the chemical formula 12Na+[Al12Si12O48]12−. As an additional consideration, we will assume that the distribution of aluminum atoms in the framework satisfies Löwenstein’s rule [55]. Also, we considered the highly stable Fe3O4 magnetite minimal
PDF
Album
Full Research Paper
Published 17 Jan 2025

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • (Fe3O4 NPs) are widely used in many biomedical applications (e.g., bioimaging, drug delivery, biosensors, diagnostics, and theranostics). However, the use of NPs does not preclude the possibility of selective toxicity and undesirable effects, including accumulation in tissues and direct interaction with
  • specific biological targets. This study evaluated the biocompatibility of Fe3O4 NPs, Teucrium polium (T. polium) extract, rutin, and the corresponding complexes on the liver tissue of healthy white Wistar rats. The impact profile of the synthesized Fe3O4 NPs (15 ± 4 nm), rutin, T. polium extract, and their
  • complexes on biochemical markers of liver function (ALT, AST, ALP, GGT, HDL, LDL, total cholesterol, total protein, and albumin) and morphological indicators of rat liver was investigated. Fe3O4 NPs, rutin, and T. polium extract do not show direct hepatotoxicity when administered intraperitoneally to rats
PDF
Album
Full Research Paper
Published 11 Dec 2024

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam 10.3762/bjnano.15.101 Abstract High spin polarization and low resistivity of Fe3O4 at room temperature have been an appealing topic in spintronics with various
  • promising applications. High-quality Fe3O4 thin films are a must to achieve the goals. In this report, Fe3O4 films on different substrates (SiO2/Si(100), MgO(100), and MgO/Ta/SiO2/Si(100)) were fabricated at room temperature with radio-frequency (RF) sputtering and annealed at 450 °C for 2 h. The
  • morphological, structural, and magnetic properties of the deposited samples were characterized with atomic force microscopy, X-ray diffractometry, and vibrating sample magnetometry. The polycrystalline Fe3O4 film grown on MgO/Ta/SiO2/Si(100) presented very interesting morphology and structure characteristics
PDF
Album
Full Research Paper
Published 14 Oct 2024

Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles

  • Supratik Kar and
  • Siyun Yang

Beilstein J. Nanotechnol. 2024, 15, 1142–1152, doi:10.3762/bjnano.15.93

Graphical Abstract
  • compound (Fe3O4) is above the leverage critical value. It will be considered as influential X outlier. There is also a test date that has a higher value than h* and will be considered as outside of the AD. The SHAP plot (Figure 2) indicates that has a predominantly positive effect on the predictions of
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • properties. Oxidative and sensitive materials are loaded into sodium alginate gel, and the absence and concentration of hydrogen peroxide in water and milk can be analyzed by a colorimetric method [117]. In another work, an alginate hybrid silver magnetite nanocomposite (Fe3O4@AMALG12@Ag) with enhanced
  • catalytic and enzymatic peroxidase mimicking activity was synthesized via self-assembly. The decorated Fe3O4@AMALG12@Ag was incorporated into an agarose hydrogel structure, and o-phenylenediamine (OPD) was used as a peroxidase substrate to detect H2O2 calorimetrically (Figure 6). The solid kit demonstrated
PDF
Album
Review
Published 22 Aug 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • , exposure to various types of NPs (Au, Ag, SiO2, and Fe3O4) was found to change the content of EV-containing miRNAs [72]. It is important to understand the mechanisms involved to analyze exosome markers with and without incubation with NPs. Nanoparticles under development for drug delivery are made from
PDF
Album
Perspective
Published 12 Aug 2024

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • ]. Additionally, iron oxides were considered as iron precursors required to make MIL-100(Fe). The first candidate Fe3O4 was used to successfully fabricate MIL-100(Fe) in a hydrothermal reactor in the absence of HF and HNO3 [26][27]; it resulted in enhanced porosity of the obtained material when increasing the
  • mass ratio between Fe3O4 and benzene-1,3,5-tricarboxylic acid in the reactor. Very recently, Freund et al. [28] employed Fe2O3 to produce successfully MIL-100(Fe) in a conventionally hydrothermal reaction at 150 °C for 27 h with the assistance of HF and HNO3, which are hazardous chemicals to the
  • stands out as the optimal sample, exhibiting a BET surface area of 1365.4 m2·g−1, which surpasses the values of 730 m2·g−1 [26] and 1244.6 m2·g−1 [27] observed in MIL-100(Fe) samples prepared from Fe3O4. Thermogravimetric analyses were performed on Fe2O3 and M-100Fe@Fe2O3 samples to confirm the presence
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
PDF
Album
Review
Published 05 Jun 2024

Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy

  • Yanyan Wen,
  • Ningning Song,
  • Yueyou Peng,
  • Weiwei Wu,
  • Qixiong Lin,
  • Minjie Cui,
  • Rongrong Li,
  • Qiufeng Yu,
  • Sixue Wu,
  • Yongkang Liang,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2024, 15, 569–579, doi:10.3762/bjnano.15.49

Graphical Abstract
  • solubility limit its functionality. In this study, radiofrequency- (RF) enhanced responsive nanoflowers (NFs), containing superparamagnetic ferric oxide nanoclusters (Fe3O4 NCs), – CUR layer, – and MnO2 (CUR-Fe@MnO2 NFs), were verified to have a thermal therapeutic effect. Transmission electron microscopy
  • significantly suppressed HCC cell proliferation. Moreover, CUR-Fe@MnO2 NFs were effective T1/T2 contrast agents for molecular magnetic resonance imaging due to the release of Mn2+ and Fe3O4 NCs. Keywords: curcumin; hepatocellular carcinoma; magnetic resonance imaging (MRI); radiofrequency (RF) hyperthermia
  • (Fe3O4 NCs), – CUR layer, – and MnO2 (CUR-Fe@MnO2 NFs). These NFs carry CUR and Fe3O4 NCs, achieve sustained and concurrent drug release, and can be used for molecular magnetic resonance imaging (MRI). Moreover, we explored the ability of the NFs to release drugs and evaluated their cytotoxic effects
PDF
Album
Full Research Paper
Published 22 May 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • Co-doped Fe3O4 nanozymes [108], WS2, MoSe2, WSe2 nanosheets [109], carbogenic nanozymes [110], and Pt/CeO2 nanozymes [111][112] also showed excellent RNS scavenging capability. Table 2 gives an overview of experiments using antioxidant nanomaterials for the treatment of oxidative stress-related
  • personalized and targeted treatments for sclerosis. Recently developed Fe3O4–CeO2 core–shell NPs have shown great potential as platforms for both the diagnosis and treatment of vascular disorders associated with ROS. This is attributed to their impressive magnetic resonance imaging (MRI) capabilities and
  • the disruption of blood clots [183]. Currently, therapies for myocardial ischemia-reperfusion injury involve the utilization of Fe3O4, CeO2, Au, and Cu as highlighted in the study by Baldim and co-workers [184]. Notably, CeO2 exhibits extensive antioxidant activities attributed to the redox cycling
PDF
Album
Review
Published 12 Apr 2024
Graphical Abstract
  • of the D1metal descriptor indicates that an increase in the metal fraction in MeOx NPs causes more cell damage (−2.63) as observed in Fe3O4 NPs (D1metal = 3). In contrast, CoO NPs with a low metal fraction (D1metal = 1) nanoparticles cause less cell damage (−4.375). Metal ions can generate reactive
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • ratios as a result of dopamine polymerisation and covalent bonding of thiol-polyethylene glycol (SH-PEG). The VNB/PDA/Fe3O4 nanoparticles have a saturation magnetisation value of 60.40 emu/g in vibrating sample magnetometry, which proves their magnetisation. Vinorelbine, which is used as an effective
  • nanostructures employed, particular emphasis has been placed on iron oxide (Fe3O4) nanoparticles. The biocompatibility and low toxicity of Fe3O4 nanoparticles have garnered significant attention in magnetic drug delivery for cancer diagnosis and treatment, primarily because of their magnetic properties [11][12
  • ]. The crystal structure of Fe3O4 nanoparticles can be tailored to allow for precise control, and these nanostructures find utility in various production processes. Magnetite nanoparticles exhibit superparamagnetic behavior due to the negligible energy barrier in the hysteresis of the particles
PDF
Album
Full Research Paper
Published 28 Feb 2024

Ferromagnetic resonance spectra of linear magnetosome chains

  • Elizaveta M. Gubanova and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2024, 15, 157–167, doi:10.3762/bjnano.15.15

Graphical Abstract
  • field acting on a separate nanoparticle can be calculated as a derivative of the total chain energy W = Wmc + Wmd + WZ: The cubic magneto-crystalline anisotropy energy of Fe3O4 nanoparticles is where V = πD2/6 is the volume of spherical particle, Kc is the cubic anisotropy constant, and (e1i, e2i, e3i
PDF
Album
Full Research Paper
Published 05 Feb 2024

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • materials with other functional materials have been found to be useful. Covalent organic frameworks (COFs) are a new class of organic polymers containing B, C, Si, N, and O in their backbones. Conjugation of COFs with Fe3O4 nanoparticles will yield a two to three times higher PCE than that of bare Fe3O4
  • nanoparticles. COF–CuSe can also increase the photothermal conversion efficiency up to 26%, which is higher than that of COF-Fe3O4 [36]. Nanoarchitectonics of photothermal materials The photon-to-heat conversion efficiency of nanomaterials depends on intrinsic factors, such as shape, size, crystallinity, and
  • materials, such as Fe3O4@Cu2−xS, the photothermal properties can also be changed [44]. In addition, because of the high surface-to-volume ratio and highly functional surface ligands, the material can be easily conjugated with a wide variety of biomolecules on its surface, which is useful in applications
PDF
Album
Review
Published 04 Oct 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • could be well controlled by adjusting the fractions of pristine materials and filler load of the absorbers. A comprehensive comparison with materials from our previous works (SiC@C and SiC@C-Fe3O4) and other reported materials (such as ZnO-decorated SiCnw or graphene/SiC) [16][24][34][35] shows that the
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • oxide nanoparticles in biomedicine requires in-depth studies of their structure and properties. It was well-established that different iron oxides (e.g., magnetite (Fe3O4), maghemite (γ-Fe2O3), goethite (α-FeOOH), and wüstite (FeO)), have a divergent impact on biological objects [7]. In this regard
  • , cubic, octahedral) is another great advantage of this method [17][18]. It has been previously reported that by using oleylamine as a stabilizer, the decomposition of thermally unstable Fe(III) acetylacetonate was observed at temperatures above 150 °C, followed by the formation of 10–16 nm FeO/Fe3O4
  • ), without additional co-stabilizers or reducing agents, could be applied to obtain monodisperse nanoparticles of iron oxide (Fe3O4, Fe2O3, or their mixtures) with controlled dimensions using the single-reactor synthesis, which involves the vacuum-controlled formation of Fe(III) alkanoates. It was
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • octahedral iron chain handles its conductivity and redox properties, causing the magnetite to initialize oxidation/reduction reactions. Fe3O4 nanoparticles have been used as a photocatalyst for the degradation of azo dyes [15], for wastewater treatment [16][17], for water decomposition, and for Cr(VI
  • was performed using a powder X-ray diffractometer (Figure 1a). The XRD spectra revealed that the diffraction peaks at 2θ = 30.2°, 35.3°, 43.7°, 53.9°, 57.1°, and 62.7° (Figure 1a) correspond to those of Fe3O4 (reference code COD 01-089-3854); they belong to a cubic structure system corresponding to
  • the facets (220), (311), (400), (422), (511), and (440) of Fe3O4, respectively [21]. The absence of the (210) and (211) peaks confirms that the catalysts were indeed magnetite. The mean size of the catalyst crystallites (D) was calculated from the high-reflection X-ray diffraction profiles by
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • -dimensional free convective hybrid nanofluid (Fe3O4 + MWCNT/H2O) stream over a resilient cylinder under the influence of a light magnetic field. The heat transportation problem was resolved by combining two methods (FEM and FVM) and an understanding that the temperature near the wall escalated due to an
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • MNPs with a diameter of roughly 47 nm and with the Fe3O4 crystal structure. In addition to the XRD, electron tomography showed that the size of MNPs is indeed in the 40 nm range, but they have a slightly elongated morphology (Figure 4). For a quantitative description of the shape and extraction of the
  • ), segmented data volume (b), different outputs of Magn3t (c, d). XRD pattern of Fe3O4 MNPs and associated Rietveld refinement (in red) (a). Tomviz perspectives on experimental tomogram data as obtained by Genfire (b) and tomogram data after segmentation and particle separation using Magn3t (c). Each of the
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • used for effectively scavenging multiple ROS. Metal-based nanomaterials, such as CeO2 and Fe3O4, have been widely applied for antioxidant therapy [10]. In addition, bioactive small-molecule compounds, such as bilirubin and curcumin, and antioxidant peptides such as glutathione (GSH) and casein
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • development of resistance. Here, we fabricated Fe3O4 nanoparticle clusters (NPCs), which have drawn widespread attention, and investigated their role in the treatment of melanoma by photothermal therapy (PTT). Scanning electron microscopy imaging shows that our synthesized NPCs are spherical with an average
  • diameter of 329.2 nm. They are highly absorptive at the near-infrared wavelength of 808 nm and efficient at locally converting light into heat. In vitro experiments using light-field microscopy and cell viability assay showed that Fe3O4 NPCs, in conjunction with near-infrared irradiation, effectively
  • ablated A375 melanoma cells by inducing overt apoptosis. Consistently, in vivo studies using BALB/c mice found that intratumoral administration of Fe3O4 NPCs and concomitant in situ exposure to near-infrared light significantly inhibited the growth of implanted tumor xenografts. Finally, we revealed, by
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • their use as a matrix for immobilizing enzymes for maintaining their biocatalytic activity for a longer duration [16]. Chen et al. describe the use of TiO2 as a molecular sieve by designing flower-like microspheres consisting of a magnetic Fe3O4 core and a hierarchical mesoporous and macroporous TiO2
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • membrane from PEO and CS with immobilized carbon quantum dots (CQDs) and Fe3O4 for the efficient removal of mercury ions from water [61]. The synergistic effect of nanofibrous polymer material and inorganic nanoparticles resulted in a maximum monolayer adsorption capacity of 148 mg/g. The Hg2+ sorption
  • gravity-driven oil separation through the membrane was fast with a separation efficiency greater than 99% [71]. Jiang et al. fabricated a PVDF/PS magnetic nanofibrous membrane by selective inclusion of Fe3O4 nanoparticles in PS via a two-nozzle electrospinning process (Figure 3). Integration of magnetic
  • Fe3O4 NPs to the composite mat helped in the easy recovery of the mats after application in oil–water separation, while PVDF provided mechanical strength. The membrane exhibited an oil sorption capacity of 35–46 g/g for four types of oils, namely sunflower oil, soybean oil, motor oil, and diesel oil [72
PDF
Album
Review
Published 31 Jan 2022

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • sensitivity the results obtained from TEM are usually more reliable [52]. The XRD pattern of SPION@bPEI synthesized in situ indicates a crystalline magnetite structure composed of both magnetite (Fe3O4) and maghemite (Fe2O3), including nanoparticles (Figure 1c). Considering only XRD patterns it would be
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022
Other Beilstein-Institut Open Science Activities