Search results

Search for "band structure" in Full Text gives 143 result(s) in Beilstein Journal of Nanotechnology.

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • have taken two approaches to developing effective solar light-activated semiconductor-based photocatalysts. The main approach is to improve the absorption of visible light of semiconductor materials by including metal or nonmetal elements. This augmentation can modify the energy band structure or
PDF
Album
Review
Published 25 Feb 2025

Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster

  • Joel Antúnez-García,
  • Roberto Núñez-González,
  • Vitalii Petranovskii,
  • H’Linh Hmok,
  • Armando Reyes-Serrato,
  • Fabian N. Murrieta-Rico,
  • Mufei Xiao and
  • Jonathan Zamora

Beilstein J. Nanotechnol. 2025, 16, 44–53, doi:10.3762/bjnano.16.5

Graphical Abstract
  • when it is introduced into the NaA zeolite to form the NaA-M composite. Comparing these structures directly and examining their respective Fe–O bond lengths reveal that the magnetite cluster undergoes structural changes when confined within the zeolite. Figure 3a presents the band structure of the NaA
  • cluster reduces the bandgap and induces a shift in the band structure of the NaA zeolite toward negative energies, approximately by 1 eV. This observation is consistent with the results of prior research studies [61][62][63]. Figure 3c illustrates the band structure corresponding to the isolated magnetite
  • , but it also affects the band structure of the zeolite framework. Additionally, the geometry of the cluster stabilized in the zeolite cavity undergoes structural changes, which leads to modifications of its electronic and magnetic properties. Specifically, the investigation shows that the cluster
PDF
Album
Full Research Paper
Published 17 Jan 2025

Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study

  • Kamal Kumar,
  • Nora H. de Leeuw,
  • Jost Adam and
  • Abhishek Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 1440–1452, doi:10.3762/bjnano.15.116

Graphical Abstract
  • al. found a shift from an indirect bandgap to a direct bandgap in arsenene under uniaxial strain along the zig-zag direction [37]. Mohan et al. employed DFT to study the effect of strain on the electrical band structure of a silicene monolayer and found a bandgap (335 meV) opening in silicene at 4
  • , at a negative mechanical strain of around −14%, a bandgap of 0.2 eV becomes apparent in the band structure of ψ-graphene, changing it from zero-bandgap to a narrow-bandgap semiconductor. These results signify ψ-graphene’s low bandgap sensitivity to mechanical strain. Enhanced sensitivity to
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • ). These band structures arise due to Bragg scattering of electromagnetic waves within the periodic structure. The refractive index contrast between the materials in the bilayers determines the spacing and position of the bands around the bandgap. The band structure calculation has been done on each
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • Ge2Se2 using its electronic band structure and density of states, as shown in Figure 3. To maintain a high degree of accuracy, we calculated the band structure using the HSE06 functional, and the band dispersion along the high symmetry paths Γ-X-S-Y-Γ in the first Brillouin zone, as shown in Figure 3
  • [41][42][46][47]. The optimum bandgap value and its CBM/VBM positions make it suitable for photovoltaic applications and provide a guideline for selecting the absorber layers in the solar cells. Notably, multivalley and flat bands are present in the energy band structure. The formation of multiple
  • structure calculation. Figure 3 shows that the calculated DOS is consistent with the electronic band structure and the bandgap values, further validating the results. Other properties that will be useful in the simulation of solar cells, such as the effective mass of charge carriers (electrons/holes
PDF
Album
Full Research Paper
Published 11 Sep 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • nanoribbons; Kelvin probe force microscopy; local contact potential difference; Introduction Graphene’s electronic properties are determined by its two-dimensionality as well as by its semimetallic gapless conical band structure [1]. Its electronic behavior depends strongly on the location of the Fermi level
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • excitations from a) sunlight and b) solar simulator. Proposed PD mechanisms of MB by MoS2/WS2 catalysts. PD stability comparison between WS2, MoS2 and WS2/MoS2 composite samples. Schematic diagram of the photocatalyst preparation. Electronic band structure for both MoS2 and WS2. Reported MoS2 and WS2-based
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • strain or piezoresistivity in graphene is expected to be small because the displacement of the Dirac point occurs in continuous k space, and strain-induced lattice distortions do not change the local band structure up to 20% strain [4]. In contrast, because of the quantized k space in carbon nanotubes
PDF
Album
Full Research Paper
Published 08 Apr 2024

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • band structure. Additionally, computational analyses have shown that the functionality of the linker, such as nitro, carboxylic, or amine, can affect the electrical characteristics of MOFs, particularly the bandgap. The p orbital interactions of the functional group with aromatic carbon atoms, which
PDF
Album
Review
Published 01 Jun 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • properties were investigated. Müllen, Fasel, and co-workers have succeeded in nanoarchitectonics of graphene nanoribbons with zigzag edges with atomic precision by on-surface synthesis via cyclodehydrogenation of precursor monomers [123]. The physical properties of the graphene nanoribbons, such as band
  • structure, magnetism, and charge and spin transport, are very interesting for nanoscale physics. In particular, nanostructures with zigzag edges are expected to have spin-polarized electronic edge states. The synthesized structures could play a leading role in graphene-based spintronics. In addition to
PDF
Album
Review
Published 03 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • curvature [35]. Finally, changes to the material composition, such as through doping or vacancy processing, can affect the LSPR because of changes in the free electron density, the electron effective mass, and the electronic band structure in general [36][37]. An understanding of the changes in absorbance
  • ultimate conversion of electron scattering into heat. The energy distribution of hot carriers (which decides the relaxation times) depends on the electronic band structure [78], particle size, density of states, and the geometry of nanoparticles [79]. Figure 12 shows the vast differences in the population
PDF
Album
Review
Published 27 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

From a free electron gas to confined states: A mixed island of PTCDA and copper phthalocyanine on Ag(111)

  • Alfred J. Weymouth,
  • Emily Roche and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2022, 13, 1572–1577, doi:10.3762/bjnano.13.131

Graphical Abstract
  • include a metal–organic interface. At this interface, it is important to be able to modify the band structure to optimize the efficiency of a device [1]. One of the most successful methods to change the electronic structure of a molecular semiconductor device is to add a second molecular species either at
PDF
Album
Supp Info
Letter
Published 22 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • . The stability of the MoS2/TNAs heterojunction is higher than that of g-C3N4/TNAs. Keywords: band structure; g-C3N4/TiO2; MoS2/TiO2; photoelectrochemical; water splitting; Introduction Hydrogen energy has become a target pursued in the energy development strategies of many countries and regions
  • chemical, thermal, and charge transport properties, which can shift the light absorption of TiO2 to the visible region [29][30][31][32]. An emerging new material in optoelectronics is g-C3N4 (bandgap of 2.65–2.7 eV) because it has an appropriate band structure with suitable energy levels regarding TiO2
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • , lower charge transfer resistance, and improved charge carrier density (2.97 × 1019 cm−3). This subsequently enhanced the photocurrent density (three times) and decreased the photovoltage decay time (two times) in comparison to those of HBN. The electronic band structure (obtained through Mott–Schottky
  • –electrolyte interface was measured as a function of the applied potential (Eappl) and enunciated through Equation 8. Furthermore, the band structure, Debye length (LDB), density of charge carriers (Nd), and width of the space charge region (Wsc) pertaining to MBN-80 could also be calculated from the Mott
  • ) photocatalytic performance of MB up to five cycles. (h, i) SEM images of MBN-80 before and after five reuse cycles. (a) Electronic band structure demonstrating the edge potentials for MBN. (b) Charge trapping analysis using various quenching reagents and (c) GC–MS analysis for the obtained intermediates. A
PDF
Album
Full Research Paper
Published 22 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • from bismuth oxyiodides at different temperatures (Figure 3a). The photoabsorption wavelength of these bismuth oxyiodides has been tuned between 400 and 700 nm. Also, these compounds have a distinctive microstructure and a controllable band structure. (Figure 3b). The breakdown of antibiotics and
  • pollutants such as tetracycline hydrochloride, bisphenol A (BPA), and RhB was used to measure the photocatalytic activity of the bismuth oxyiodides. The activity decreased in the sequence Bi4O5I2–Bi5O7I > Bi4O5I2 > BiOI, which is linked to charge separation efficiency and band structure. Engineered Bi
  • intermediates from the synthesis process into photocatalysts to alter the energy band structure and increase photocatalytic activity [89]. A simple two-step technique was used to develop a novel compound photocatalyst of Bi/BiOBr-Bi5+ [90]. X-ray diffraction, field-emission transmission electron microscopy, and
PDF
Album
Review
Published 11 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • calculations of the band structure of t-Te have been revealed that the strong spin–orbit coupling breaks the fourfold degeneracy of the valence band at the H point of the Brillouin zone, creating two non-degenerated H4 and H5 bands and a doubly degenerated H6 band. The H4 and H5 bands contribute to the
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • and urea and, subsequently, characterized. Charge transfer dynamics in the heterojunction and band structure were investigated to understand the effect of the heterojunction on the photocatalytic activity. Finally, the photocatalytic pathway of the MgO@g-C3N4 heterojunction was studied via trapping
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • photocatalytic mechanism, the band structure was measured by UV–vis DRS and valence band X-ray photoelectron spectroscopy (VB-XPS). UV–vis DRS spectra and the bandgap (Eg) of Bi2O3 and MIL101(Fe) were discussed in Figure 5a, and the obtained bandgap of Bi2O3 and MIL101(Fe) are 2.78 and 2.75 eV, respectively
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • of order-of-magnitude estimation we define the spin-diffusion velocity vs as from which Modern band-structure calculations [48][49] show that more than 95% of the electron density of states at the Fermi energy comes from the itinerant 4d electrons. The Fermi velocity of 3d electrons in iron-group
PDF
Album
Full Research Paper
Published 25 Aug 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • molecular properties of polyaniline have been studied by quantum mechanical means in [4][8]. The band structure was calculated by Reis et al. [9], together with transmittance, electrical current flow, and charge density. For these calculations, density functional theory (DFT, [10]) based on the generalized
PDF
Album
Full Research Paper
Published 26 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • effects strongly influence the optical and electronic properties of 2D-TMDC materials. Optical second harmonic generation (SHG) spectroscopy has been recently used to study the presence of mid-gap states in the electronic band structure of WS2 flakes, which are induced by sulfur vacancies [14]. In
  • defect-induced band bending of the conduction band at K and Q states in few-layer MoS2 [9][10]. All in all, structural irregularities play a crucial role in the modification of the electron band structure in 2D-TMDCs, further ruling their optical and electronic properties. Therefore, the relationship
  • the interaction with local dipoles in plasma-treated MoS2 [22]. Additionally, the electronic band structure of MoS2 can be significantly modified after oxygen incorporation into MoS2. The charge transfer from the valence band of partially oxidized MoS2 to the LUMO of R6G can be tuned in resonance with
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • a higher adsorption of analyte molecules, increasing the EF from 106 (before) to 108 (after hydrogenation) [43]. The charge transfer effect was probably increased as well since the hydrogenation introduced lattice defects that could alter the energy band structure of ZnO, promoting charge separation
PDF
Album
Review
Published 27 May 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • , the partial crystal orbital Hamilton population (-pCOHP) is analyzed using the LOBSTER program through the partition of the band-structure energy into orbital–pair interactions [47][48]. Results Structural properties The geometrical structures of TMDs in the 1T′ structural polytype are illustrated in
  • well-known differences between these two phases is their electronic properties. Using MoS2 as an example, its 1T′ and 2H polytypes are discussed by presenting their DOS and band structure, as illustrated in Figure 5a. There is a bandgap in the 2H polytype, which indicates that it is a semiconductor. On
  • indicated in Figure 1. Calculated mechanical properties of 1T′ MoS2, MoSe2, WS2 and WSe2 crystals including (A) the elastic constants, (B) bulk moduli (B), shear moduli (G), Young’s moduli (Y), microhardness (H), and (C) Poisson’s ratio (ν) and B/G ratios. (a) Total and partial DOS and band structure of
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • catalytic area, SnO2 is an emerging material for removing contaminants such as organic dyes, phenolic compounds, and volatile organic compounds (VOCs) due to strongly oxidizing properties thanks to flexible energy band structure, rich defects, good chemical, and high thermal stability, and easily controlled
  • the band structure. Moreover, the bandgap of SnO2−x self-doped with Sn2+ can be easily determined as follows: A straight line to the x-axis, equaling to the extrapolated value of Ephoton at α = 0, gives the absorption edge energy. This energy parameter corresponds to the bandgap (Eg) of the material
  • •O2− radicals played a primary role in the photocatalytic NO oxidation. Additionally, using photoluminescence (PL) spectroscopy, XPS, active species trapping tests, and ESR spectroscopy, the authors studied the photoinduced charge migration and trapping. They proposed the band structure of the SnO2
PDF
Album
Review
Published 21 Jan 2022
Other Beilstein-Institut Open Science Activities