Search results

Search for "cell membrane" in Full Text gives 125 result(s) in Beilstein Journal of Nanotechnology.

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • ZEISS ZEN software. A significant increase of the ratio between the intensities of FITC and DAPI was observed from 1 to 4 h. This suggests that the nanoparticles can be internalized without damaging the cultured cells within 4 h. They can cross the cell membrane and accumulate in the cytoplasmic region
  • obtained fluorescence represents the increased amount of nanoparticles interacting with the cell membrane and might be associated with the increased mucin amount along with the cells. This indicates that the nanoparticles can be adsorbed onto the cells under in vitro conditions. Conclusion Gastric
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • , including WNT, Notch, STAT 1/3, and NRF-2, respectively [20]. Graphene oxide nanosheets have been shown to selectively disrupt the cell membrane and cytoskeleton of cancer cells through activation of FAK-Rho-ROCK pathway and suppressed expression of integrin [21]. It has also been found that nuclear
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • minimum inhibitory concentration and minimum bactericidal concentration values of 78.1 and 312.5 µg/mL, respectively. BerNPs caused significant damage to S. mutans cells, disrupting the cell membrane structure, and leading to cell lysis and death. Additionally, BerNPs effectively inhibited the biofilm
  • wrinkles (Figure 4A). However, after exposure to BerNPs, significant alterations in bacterial cell morphology were observed (Figure 4B). The cell membrane was severely compromised, exhibiting wrinkled and disrupted borders, leading to membrane rupture. This damage caused the release of intracellular
  • , ultimately triggering cell death [32]. The findings of Peng et al. on Streptococcus agalactiae indicated that berberine significantly disrupted the cell membrane structure. SDS-PAGE electrophoresis results showed that some protein bands were blurred or absent, suggesting that berberine led to complete or
PDF
Album
Full Research Paper
Published 27 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • aim to prepare nanocarriers with the potential to prolong the drug circulation time, cross the blood–brain–tumor barrier (BBTB), and provide targeted and controlled drug release in the brain tumor cells. Cytotoxicity and effects on cell membrane integrity of the blank and TMZ-loaded dual
  • apoptosis via activation of reactive oxygen species (ROS)-, caspase-, and mitochondrion-dependent pathways, such as p53-mPTP [13][17][18], and reduce the expression of voltage-dependent ion channel genes and extracellular receptors in glioma cells, damaging the cell membrane and changing its potential [19
  • be explained by the different effects on cell membranes during internalization. While the tubular shape of the CNTs provides membrane penetration whithout significantly affecting the integrity of the cell membrane, the flat surface of GO leads to more intense contact and rupture of the cell membranes
PDF
Album
Full Research Paper
Published 19 Feb 2025

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • with cancer treatment offer numerous advantages, including immune evasion, targeting behavior, specific site accumulation, targeted delivery of drugs or genes, and reduced side effects. Studies involving inorganic nanocarriers with cell membrane coatings (CMC-NPs) have highlighted the importance of the
PDF
Album
Perspective
Published 16 Dec 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • can be released under specific biological conditions. Further, the polymer coating provides better colloidal stability, sustained drug release, and high loading capacity to the hybrid nanocarriers [54][55][56]. Cell membrane-camouflaged PLHNPs PLHNPs have been coated with cell membranes (e.g
PDF
Album
Review
Published 22 Nov 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • . Physicochemical features such as size, shape, and surface charge play an extremely important role in the internalization of nanostructures. The uptake of nanoparticles into cells requires two steps. The first is the binding to the cell membrane, and the second is the uptake into the cell [34]. The zeta potential
PDF
Album
Full Research Paper
Published 26 Sep 2024

AI-assisted models to predict chemotherapy drugs modified with C60 fullerene derivatives

  • Jonathan-Siu-Loong Robles-Hernández,
  • Dora Iliana Medina,
  • Katerin Aguirre-Hurtado,
  • Marlene Bosquez,
  • Roberto Salcedo and
  • Alan Miralrio

Beilstein J. Nanotechnol. 2024, 15, 1170–1188, doi:10.3762/bjnano.15.95

Graphical Abstract
  • are HER2-positive, overexpressing Erb-B2 receptor tyrosine kinase 2 (ERBB2) in the cell membrane. HER2 tumors are usually more aggressive than other ones, but the advantage is that their treatment is very effective [15]. Another chemotherapy target is the chemokine C-X-C motif receptor 7 (CXCR7) [16
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Identification of structural features of surface modifiers in engineered nanostructured metal oxides regarding cell uptake through ML-based classification

  • Indrasis Dasgupta,
  • Totan Das,
  • Biplab Das and
  • Shovanlal Gayen

Beilstein J. Nanotechnol. 2024, 15, 909–924, doi:10.3762/bjnano.15.75

Graphical Abstract
  • or passive transport across the cell membrane [12]. Excessive absorption by normal cells enables metal oxide nanoparticles to engage with various subcellular organelles, initiating diverse signaling pathways to generate a stress response within cells. This results in the production of free radicals
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2024

Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy

  • Yanyan Wen,
  • Ningning Song,
  • Yueyou Peng,
  • Weiwei Wu,
  • Qixiong Lin,
  • Minjie Cui,
  • Rongrong Li,
  • Qiufeng Yu,
  • Sixue Wu,
  • Yongkang Liang,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2024, 15, 569–579, doi:10.3762/bjnano.15.49

Graphical Abstract
  • increased the permeability of the cell membrane to improve the antitumor effects of CUR. Conclusion In this study, responsive CUR-Fe@MnO2 NFs were successfully synthesized, and it was demonstrated that RF heating improved antitumor effect of NFs in vitro. The combination of RF heating responsive nanoflowers
PDF
Album
Full Research Paper
Published 22 May 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • intracellular Ca2+ in cells and tissues. One of the most important criteria of anti-inflammatory drugs is the direct delivery to the inflamed tissue [96][97][98]. To increase the targeting ability, anti-inflammatory agents can be wrapped with a cell membrane camouflage technique [99][100][101]. For example, Ma
PDF
Album
Review
Published 12 Apr 2024
Graphical Abstract
  • well as in biological systems. Since the cell membrane is negatively charged, the interaction between NPs and cell membrane or organelles can be highly influenced by the zeta potential. There is an increased interest in integrating data on metal oxides in the field of nanotoxicology that would be able
  • biocompatibility on NP toxicity. These properties of NPs determine their toxicity and interaction with the cell membrane damaging human health and the environment [12]. The toxic effect of NPs can be used as a medical treatment for diseases at the cellular level, that is, targeting and destroying cancerous cells
  • NPs and its influence on toxicity. Methods and Materials Dataset The study is based on two datasets, that is, dataset I (zeta potential) and dataset II (cell membrane damage). Dataset I consists of 18 metal oxide nanoparticles (MeOx NPs) with stoichiometries of MO, MO2, MO3, M2O3, and M3O4. This data
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • destabilization of the bacterial cell membrane by interactions with the nanocarriers (thus allowing for the penetration of the drug into the bacteria) is not known (Figure 1e). Yet, the accumulation of ONPs in bacterial cells is crucial if ONPs are to be used for fluorescent labelling of cells. Also, in the case
  • been designed to allow for the modification of their fluorescence properties. This also modified the outer surface chemistry; thus, the ability of the NPs to pass through the cell membrane was possibly facilitated. The localization of the fluorescent BSA/PDA NPs related to the cells was investigated by
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • cancer cells, likely attributed to particle uptake through endocytosis pathways, including phagocytosis and macropinocytosis [51]. The uptake process depends on cell membrane and particle properties, including size, shape, composition, and surface properties. These factors play a crucial role in particle
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • toxicity through an ionic mechanism followed by the generation of reactive oxygen species (ROS). Another, biomarker for ROS is lipid peroxidation [38] as free radicals cause lipid peroxidation inside the cell membrane. The catalytic properties of the metals are also responsible for an increased toxicity of
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • nanoparticles could accumulate in the site of inflammation delivering the drug in the surroundings of their molecular target. In addition, nanocarriers may pass through the cell membrane via endocytosis to avoid BNZ efflux via the P-glycoprotein efflux pump [14][15][16], thus delivering the drug more
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • ) [16]. Unfortunately, confocal imaging is limited by relatively low throughput (even with automation) and can be ambiguous when determining internalization within 500 nm of the cell membrane [17]. However, widefield fluorescence microscopy is still widely used when it comes to observing the expression
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • SH-SY5Y cells, and no hemolysis was observed. The presence of Tat on the surface of the nanoparticles enabled cell membrane penetration and uptake in HeLa Cells. The effect of electrolytes in the aqueous phase on Polysorbate 80-based PIC nanoemulsions and derived PLGA nanoparticles has been explored
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • larger molecules. Fenestrated capillaries are more permeable than the continuous endothelium and occur in endocrine organs such as the thyroid gland and kidneys. The holes in the cell membrane (fenesters) allow for the selective exchange of larger substances and molecules, for example, hormones, as well
PDF
Album
Review
Published 08 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic
  • diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising
  • intended function of the NPs, resulting in changes of biological behavior and loss of function [6][7]. Moreover, the protein corona can accelerate RES/MPS uptake and interfere with the targeting ability of NPs [8]. The biomimetic technique of cell membrane coating, which employs naturally cell-derived
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • translated to drug delivery systems for lung and brain targeting [119][120][121][122]. Biomimetic cell membrane protein-decorated NPs successfully mitigate immune system recognition, increase blood circulation time, improve nonspecific tumor targeting, and increase tumor homing potential. NPs with red blood
  • cell-like (RBC) surfaces, a “do not eat me” CD47 cell signal, and an immuno-suppressive protein shell instead of, or combined with, a PEG corona are among the most common biomimetic cell membrane-based NP examples in literature. So-called red blood cell vesicle shell nanoparticles (RVPNs), or RBC
  • membrane-decorated NPs, platelet membrane-coated core–shell nanovesicles, and cancer cell membrane-coated nanoparticles are also versatile biomimetic nanocarriers showing improved biodistribution and increased tumor-homing potential [127][128][129][130]. Among them, cancer cell membrane biomimetic NPs may
PDF
Album
Review
Published 22 Feb 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • the outer cell membrane and as such, are less likely to prompt resistance in microorganisms. In addition, their tunable sizes, shapes, and high surface area-to-mass ratio offer increased interactions with cells [8]. The prevalent MNPs used today as antimicrobial agents are copper [9] (or copper oxide
  • the bacterial cell membrane [19][20], allowing its penetration inside the cytoplasm. This leads to the leakage of cellular components through the pores of the perforated cellular membrane. Once inside, the ions promote reactive oxygen species (ROS) generation, deactivate proteins, and block DNA
PDF
Album
Full Research Paper
Published 12 Jan 2023

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • compounds act as reducing agents, as well as to changes in the shape, size, and size distribution of the resulting Ag nanoparticles. Cytotoxic behavior It has been reported that several cytotoxic mechanisms of AgNPs can cause DNA, mitochondrial, and cell membrane damage as well as apoptosis [44]. Here, the
  • concentrations, however, necrosis (black box) predominates, where the formation of cellular debris and damage to the cell membrane are detected. Depending on the level of stress exerted on the cell, this behavior will trigger cell death [47]. Çìftçì et al. [48] suggested that AgNPs induce apoptosis and necrosis
  • metalloproteinases (MMPs), the activity of which is favored by reactive species, and they have been shown to be directly involved in death mechanisms such as apoptosis, causing damage at the cell membrane level. In contrast, in monocytes, which are also high in MMPs, their activation mechanism is largely dependent
PDF
Album
Full Research Paper
Published 13 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • literature, there are various studies showing consistency with our results. Varan et al. reported that cationic nanoparticles have a higher tendency to interact with the negatively charged cell membrane [67]. Accordingly, Verma et al. stated that the surface properties and charges of nanoparticles play an
  • essential role in the interaction between nanoparticles and cell membrane and the subsequent intracellular fate of the nanoparticles [68]. Similarly, Chen et al. revealed that PLGA NPs coated with CS had higher anticancer activity then unmodified formulations [69]. When DCX-loaded PLGA NPs were compared to
PDF
Album
Full Research Paper
Published 23 Nov 2022
Other Beilstein-Institut Open Science Activities