Search results

Search for "cross section" in Full Text gives 494 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • complicated. In our case, considering the literature values for the electron interaction cross section, we tend to favor the DD regime conditions (please see details in Supporting Information File 1, section S2). However, in both regimes, molecular fragments will have enough time to desorb before being
  • conducted with a field-emission gun and an electron energy of 1 keV. This lower electron energy increases the dissociation cross section and leads to greater heating of the deposit due to more energy deposited per unit trajectory length and, consequently, the small excitation volume where all the beam
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • entire phenomenon can be summarized through the equation λ = (σ·n)−1, where λ is the mean free path of the ions, σ is the recombination cross section, and n is the density of the ions inside the plasma [32][33][34]. The mean free path of the ions, determined by the recombination cross section and density
PDF
Album
Full Research Paper
Published 31 Mar 2025

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • larger. The QTF’s resonance frequency depends on pressure according to the following equation: where μ is the added mass due to the interaction with surrounding gas molecules, ρ is the density of the quartz tuning fork, and A is the area of the cross section [19]. Basically, the pressure dependence is
  • heating filament. The qPlus sensor is mounted to a three-contact slider and controlled by a piezotube. The piezotube is outside of the reactor volume. Figure 2b shows a schematic cross section of the AFM/STM reactor together with the sample holder. For high-pressure experiments, the reactor volume needs
  • schematic of the ReactorAFM/STM cross section. The qPlus sensor is contained within a small high-pressure volume in the reactor body. The sample forms one side of the reactor while the remaining reactor walls are chemically inert (Zerodur). High-temperature-resistant and inert Kalrez O-rings seal off the
PDF
Album
Full Research Paper
Published 21 Mar 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • efficient process with photothermal conversion nearing 100% efficiency (see below in Figure 2a) [45][46][47]. The specific absorption wavelength of these metals is closely linked to their extinction cross section and particle size and shape, which are greatly influenced by the chemical capping agents and
PDF
Album
Review
Published 17 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • provide information on the chemical composition of the outermost 1–3 µm of a material [144][145]. A visual and spectral representation of the chemical composition of a MOF-based MMM cross section may help identify the presence and type of defects within the membrane and simply verify the successful
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • Fowlkes and Rack [6] where a value of 0.025 was reported for W(CO)6. In this work, a stationary pulsed beam was used to study the adsorption/desorption dynamics. A fit of the results to the continuum model was performed with an estimated value for the energy-integrated dissociation cross section in order
  • density, τ is the average precursor residence time, σ is the energy-averaged dissociation cross section, and D is the surface diffusion coefficient. This rate equation makes up the balance between all processes that contribute to replenishment and depletion of precursor molecules. The electron beam is
  • described by a Gaussian shape function: where f0 is the maximum electron flux at r = 0 and a is the standard deviation. The width of the Gaussian is defined as . The growth rate under electron irradiation is proportional to the local electron flux, the dissociation cross section, and the volume V of the
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • a first-order kinetic process, we can extract a reaction cross section σ1 for each ion/precursor combination studied. This is illustrated in Figure S3 (Supporting Information File 1) by following the change in the relative intensity of the C 1s photoelectron peak as a function of ion dose. Results
  • ions, increasing the likelihood of their collisions with the adsorbed precursor molecules [37][41]. These two factors are primarily responsible for the larger reaction cross section observed for Ar+ irradiation compared to He+ or H2+ (Table 1). Table 1 also shows that the σ1 value for CO desorption
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • , which are surrounded by air boundaries. Specifically, Figure 4a illustrates the electric field distribution over the 2D cross-section of LN/TiO2 PhC structures, while Figure 4c shows the distribution for LN/SiO2 PhC structures. On the light incident side, the partial standing wave pattern is formed due
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • morphology (triangular cross section with two corrugated surfaces) associated with a strong optical reflection in the visible and near-infrared (NIR) range, while maximizing heat emissivity in the mid-infrared (MIR). This allows the insects to maintain a lower thermal steady state and to cope with high
PDF
Album
Review
Published 05 Nov 2024

Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae)

  • Silvana Piersanti,
  • Gianandrea Salerno,
  • Wencke Krings,
  • Stanislav Gorb and
  • Manuela Rebora

Beilstein J. Nanotechnol. 2024, 15, 1260–1272, doi:10.3762/bjnano.15.102

Graphical Abstract
  • along its medially oriented side (Figure 1c–e). In the cross section, the asymmetrical and concave shape of the grooming structures was clearly visible, with a thin lamina originating from a robust seta (Figure 1f). Dirt particles tended to accumulate inside the flag-shaped structures in correspondence
  • indicate the dirt particles accumulated inside the flag-shaped structures in correspondence of the concave cuticular lamina. S, socket. (e) Detail of the border of the cuticular lamina with indentations (arrows). (f) Cross section of a grooming device in its central portion. Note the hair (H) and the
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • and a cross section through the middle of the ion beam spot for a simulated sample volume of 600 nm × 600 nm × 400 nm after an irradiation time of 990.0 ns is shown in Figure 3. The simulations for 5 keV in the nanoampere beam current range (Figure 3A) and picoampere beam current range (Figure 3B
  • simulations and experimental data Cross sections were cut into collagen using 5 keV energy Ga ions to evaluate the results from the simulations and the proposed model. One cross section was cut with an acceleration voltage of 30 kV, beam current of 1 nA, 200 nm blur, and 20% overlap to assess the heat damage
  • × 10 µm × 200 nm) were cut into the non-resin embedded collagen sample using the FEI Quanta 200 3D at the Queensland University of Technology, Brisbane, Australia. All cross-sections were processed using 5 keV ions. One cross-section was cut with 1.4 nA, 50% overlap to assess if reducing the ion energy
PDF
Album
Full Research Paper
Published 27 Sep 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • irregularities such as kinks or defects at the edge are observed in the topography measurement. For example for the GNR where the cross section has been taken, marked by a black line, there is a kink associated with a darker region in the local work function, and in the topography image there are some small
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • significantly larger after 6 months, when the cross section was prepared. This, again, hints toward incompletely dissociated precursor, which may have been further dissociated after the actual deposition process (cf. the section on deposit evolution in Supporting Information File 1 for more details). The cross
  • parasitic co-deposition occurred below the actual helix wires caused by the residual primary electrons that penetrate the helix arms [39]. This can potentially be reduced by lowering the primary beam energy and, correspondingly, the interaction volume, while at the same time a more circular cross section of
  • cut for the TEM sample preparation. (c) Transmission electron micrograph of the deposit cross-section with close-ups (d–f). Scanning electron micrographs of a spot deposit with 60 min continuous spot irradiation (a) with the corresponding close-ups of the halo regions. (b) High-resolution SEM image 6
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
PDF
Album
Review
Published 06 Aug 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • purification of the deposits to compensate for the low electron-stimulated dissociation cross section of water on the substrate [37]. Deposits were made at increasing water flux, indicated by an increase of the total chamber pressure. The carbon and platinum contents were determined afterwards, and the C/Pt
  • , isolated grains are visible. Also, several gaps are present in the lines, where the grains apparently did not connect to each other. A FIB cross section of the line revealed that the gaps extend down to the substrate surface. The gaps and the granularity may arise from the high mobility of Pt, and
  • patterned area ranges between −0.125 and 0.125 µm. The (a) carbon and (b) platinum contents are presented in atom %. The background Si signal was not excluded from the analysis. (a) High-resolution TEM image and (b) overlay of the HAADF image and the STEM-EDX map of the cross section of deposit 1g. Layers
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Electron-induced ligand loss from iron tetracarbonyl methyl acrylate

  • Hlib Lyshchuk,
  • Atul Chaudhary,
  • Thomas F. M. Luxford,
  • Miloš Ranković,
  • Jaroslav Kočišek,
  • Juraj Fedor,
  • Lisa McElwee-White and
  • Pamir Nag

Beilstein J. Nanotechnol. 2024, 15, 797–807, doi:10.3762/bjnano.15.66

Graphical Abstract
  • dipole moment of 1.72 Debye. We thus presume that, also in the present case, the high DEA cross section close to 0 eV is mediated by long-range electron–precursor interactions to a large extent. For higher electron energies, the resonance structures in Fe(CO)5 and Fe(CO)4MA are very similar. There is the
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • cross section, the simulation can accurately predict the depth and shape of the structures, but there is some inaccuracy in reproducing the form of the left sidewall of the structure with a large amount of the redeposited material. To further validate the developed simulation approach and gain a better
  • microscopy (SEM) image of the trenches with a superimposed line depicting the position of the prepared cross section. Figure 3b–d presents the corresponding cross-sectional STEM images of trenches, where the silicon dioxide is visualized as the dark layer. The shape of trenches was mainly determined by the
  • structures to protect the surface. Cross section specimens for transmission electron microscopy investigation were prepared using in situ lift-out [39]. Final polishing was performed at the glancing incidence angles of the ion beam through the gradual decrease of the accelerating voltage from 30 to 2 kV. The
PDF
Album
Full Research Paper
Published 24 Jun 2024

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov and
  • Edgars Butanovs

Beilstein J. Nanotechnol. 2024, 15, 704–712, doi:10.3762/bjnano.15.58

Graphical Abstract
  • deviations from rectangular cross-sections, e.g., trapezoid). Minimal and maximal values of possible geometry deviations are used for modelling elastic modulus variations. These cross-section errors are detailed in Table S4 and Table S5, along with Figure S4, available in Supporting Information File 1. These
  • ]. This drastic difference from the bulk value is typically ascribed to a growth-direction-dependent concentration of stacking faults and point defects in NWs and NBs, which is correlated to the nanostructure cross-section aspect ratio (e.g., in ZnO nanostructures). Lower width-to-height ratio in NWs
  • resulted in higher elastic modulus values, while NBs with higher width-to-height ratios showed a significant decrease in elastic modulus [22]. Although the variation of the cross-section geometry and the presence of different growth directions, related to the low symmetry of the monoclinic Ga2O3 phase and
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2024

Comparative analysis of the ultrastructure and adhesive secretion pathways of different smooth attachment pads of the stick insect Medauroidea extradentata (Phasmatodea)

  • Julian Thomas,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 612–630, doi:10.3762/bjnano.15.52

Graphical Abstract
PDF
Album
Full Research Paper
Published 29 May 2024

Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements

  • Laurent Nony,
  • Sylvain Clair,
  • Daniel Uehli,
  • Aitziber Herrero,
  • Jean-Marc Themlin,
  • Andrea Campos,
  • Franck Para,
  • Alessandro Pioda and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2024, 15, 580–602, doi:10.3762/bjnano.15.50

Graphical Abstract
  • qPlus sensor. The discussion is restricted to probes with a rectangular cross section (length l, thickness t, width w are such that l ≫ t and l ≫ w) treated in the Euler–Bernoulli model of the embedded beam, extensively detailed, for example, in [35] (cf. also Supporting Information File 1). The
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • ) or the removal of substrate material by reactive precursor fragments, that is, etching (focused electron beam-induced etching, FEBIE). For the interested reader, the literature contains a number of good reviews of the technique [1][2][3][4][5]. The cross section of a line patterned using FEBID
  • ) and from the BSE (SE2) [6][7][8]. An example of a line deposited from a carbon precursor on a silicon substrate, coated with a 20 nm Au–Pd layer and a 5 nm Ti adhesion layer, is shown in Figure 1a, clearly showing the broad (black) tails on both sides of the line. The cross section of the line, made
  • using focused ion beam (FIB) milling and shown as an electron tilt image in Figure 1b, clearly demonstrates the Gaussian shape. For lithography applications, however, both the long tails and the Gaussian cross section are highly undesirable. The tails may form interconnects to neighboring lines, and the
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • Au NWs have a pentagonal cross-section, meaning that for NWs deposited on a flat substrate, 1/5 of the NW surface is in contact with the substrate [35]. This aspect should unavoidably have an influence on the total surface energy of NW. Therefore, in addition to parameters such as temperature, time
  • a nominal diameter of 120 nm and length of tens of micrometers were purchased from Blue Nano, Inc. These NWs have a pentagonal cross-section and a five-fold twinned inner structure. More details on the structure and properties of these NWs can be found in our previous works [35][39]. The patterned
  • NWs used in the present study have a five-fold twinned crystal structure resulting in a pentagonal cross-section. Since pentagonal symmetry is a “forbidden” symmetry in crystallography, five-fold twinned crystals unavoidably have inner strains [44]. This could potentially be one of the driving forces
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Modulated critical currents of spin-transfer torque-induced resistance changes in NiCu/Cu multilayered nanowires

  • Mengqi Fu,
  • Roman Hartmann,
  • Julian Braun,
  • Sergej Andreev,
  • Torsten Pietsch and
  • Elke Scheer

Beilstein J. Nanotechnol. 2024, 15, 360–366, doi:10.3762/bjnano.15.32

Graphical Abstract
  • which are near the surface of the AAO template. (b) SEM image of nanowire-based devices. The measured nanowire array was contacted by the patterned Au bottom electrode and the Al top electrode. (c) Sketch of the cross section of the device. (a) SEM image of nanowires after the AAO template was removed
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • films was studied in cross-section view mode using a field-emission scanning electron microscope (FESEM) (Carl Zeiss). The samples were cleaved using a diamond cutter and placed on the SEM sample holder with the cross-sectional area facing the electron beam. All SEM images were captured using 5 keV
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Comparative electron microscopy particle sizing of TiO2 pigments: sample preparation and measurement

  • Ralf Theissmann,
  • Christopher Drury,
  • Markus Rohe,
  • Thomas Koch,
  • Jochen Winkler and
  • Petr Pikal

Beilstein J. Nanotechnol. 2024, 15, 317–332, doi:10.3762/bjnano.15.29

Graphical Abstract
  • , P6), and Figure 5 is a cross-section SEM image (KRONOS M1). The particle size distributions measured with each manufacturer’s method are remarkably similar, as shown in Figure 1. The D50n values are close, but the tails of the distributions vary slightly, especially in the cases where a small number
  • sample preparation, measurement and data evaluation, including all relevant steps, are briefly described here, a more elaborate description of the cross section method (M1) can be found in literature [21]. Methods M2 and M3 used for sample preparation, image acquisition, and image processing are the same
  • , calculations, and graphics were performed using the R software [24], the fitdistrplus package, [25] and the graphical package ggplot2 [26]. Comparison of cumulative distribution curves measured by three different manufacturers using three different methods (M1: cross section, M2: dry, and M3: sonicated
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2024
Other Beilstein-Institut Open Science Activities