Search results

Search for "drug delivery" in Full Text gives 359 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Durable antimicrobial activity of fabrics functionalized with zeolite ion-exchanged nanomaterials against Staphylococcus aureus and Escherichia coli

  • Perla Sánchez-López,
  • Kendra Ramirez Acosta,
  • Sergio Fuentes Moyado,
  • Ruben Dario Cadena-Nava and
  • Elena Smolentseva

Beilstein J. Nanotechnol. 2026, 17, 262–274, doi:10.3762/bjnano.17.18

Graphical Abstract
  • are currently explored for various biomedical applications, including disease prevention, diagnosis, and the improvement of antiviral drug delivery systems [5][6]. In some cases, the antimicrobial properties of NPs lead to creation of new “nano-antimicrobial” materials [7]. The mechanism by which
PDF
Album
Full Research Paper
Published 06 Feb 2026

Micro- and nanoscale effects in biological and bioinspired materials and surfaces

  • Thies H. Büscher,
  • Rhainer Guillermo Ferreira,
  • Manuela Rebora and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2026, 17, 214–217, doi:10.3762/bjnano.17.14

Graphical Abstract
  • medicine, Perini et al. [25] reviewed the importance of biomimetic nanocarriers for drug delivery systems with improved biocompatibility and target specificity, whereas Mohammed et al. [26] focused on biomimetic potential for nanomedicines in tumor therapy. Besides nanotechnological solutions inspired by
PDF
Editorial
Published 28 Jan 2026

Structure-dependent thermochromism of PAZO thin films: theory and experiment

  • Georgi Mateev,
  • Dean Dimov,
  • Nataliya Berberova-Buhova,
  • Nikoleta Kircheva,
  • Todor Dudev,
  • Ludmila Nikolova,
  • Elena Stoykova,
  • Keehoon Hong,
  • Dimana Nazarova,
  • Silvia Angelova and
  • Lian Nedelchev

Beilstein J. Nanotechnol. 2026, 17, 186–199, doi:10.3762/bjnano.17.12

Graphical Abstract
  • a wide range of applications. This knowledge is particularly important in fields such as organic electronics and drug delivery, where thin films play a pivotal role. Our study focuses on these aspects to deepen the understanding of how to optimize PAZO thin films for photonic and optoelectronic
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2026

Safe and sustainable by design with ML/AI: A transformative approach to advancing nanotechnology

  • Georgia Melagraki

Beilstein J. Nanotechnol. 2026, 17, 176–185, doi:10.3762/bjnano.17.11

Graphical Abstract
  • efficiency. From advanced drug delivery systems to clean energy solutions, the applications of nanotechnology are diverse and transformative. However, these innovations are accompanied by complex challenges regarding safety and sustainability for both the nanoscale materials themselves and for the products
  • , offering unprecedented opportunities to design and develop nanomaterials with unique, tailored properties. These advances have significantly impacted diverse industrial sectors, including healthcare, energy, environmental remediation, and defence. For instance, nanoparticle-based drug delivery systems have
  • formulations that offer both optimal performance and a reduced risk profile [47][48]. By combining high-throughput computational screening with experimental data, this approach enables rapid candidate selection for diverse applications, from catalysis to targeted drug delivery [49][50]. One of the most
PDF
Album
Perspective
Published 16 Jan 2026

From shield to spear: Charge-reversible nanocarriers in overcoming cancer therapy barriers

  • Madhuri Yeduvaka,
  • Pooja Mittal,
  • Ameer Boyalakuntla,
  • Usman Bee Shaik,
  • Himanshu Sharma,
  • Thakur Gurjeet Singh,
  • Siva Nageswara Rao Gajula and
  • Lakshmi Vineela Nalla

Beilstein J. Nanotechnol. 2026, 17, 159–175, doi:10.3762/bjnano.17.10

Graphical Abstract
  • , drug resistance, and poor tumour selectivity. In response to these limitations, nanotechnology-based drug delivery systems have gained prominence for enhancing solubility, improving molecular stability, enabling controlled drug release, and prolonging systemic circulation, offering superior therapeutic
  • pressing need for innovative solutions. An example would be smart nanocarrier drug delivery systems that enhance targeting precision and mitigate adverse effects [9][10]. Nanotechnology-based drug delivery systems have revolutionised cancer treatment by improving drug solubility, stability, and
  • advancements in nanocarrier-based cancer therapy, recent research has increasingly emphasised refining their physicochemical traits, especially surface charge, to boost therapeutic outcomes. A notable development in this context is the emergence of charge-reversible nanoscale drug delivery systems (CR-NDDSs
PDF
Album
Review
Published 14 Jan 2026

Development and in vitro evaluation of liposomes and immunoliposomes containing 5-fluorouracil and R-phycoerythrin as a potential phototheranostic system for colorectal cancer

  • Raissa Rodrigues Camelo,
  • Vivianne Cortez Sombra Vandesmet,
  • Octavio Vital Baccallini,
  • José de Brito Vieira Neto,
  • Thais da Silva Moreira,
  • Luzia Kalyne Almeida Moreira Leal,
  • Claudia Pessoa,
  • Daniel Giuliano Cerri,
  • Maria Vitória Lopes Badra Bentley,
  • Josimar O. Eloy,
  • Ivanildo José da Silva Júnior and
  • Raquel Petrilli

Beilstein J. Nanotechnol. 2026, 17, 97–121, doi:10.3762/bjnano.17.7

Graphical Abstract
  • that approximately half of metastatic CRC cases are resistant to 5-FU treatments, contributing to decrease the survival rate of patients [5]. In this context, nanotechnology has emerged as a promising therapeutic strategy for cancer treatment. Nanostructured drug delivery systems enable preferential
PDF
Album
Full Research Paper
Published 09 Jan 2026

Improving magnetic properties of Mn- and Zn-doped core–shell iron oxide nanoparticles by tuning their size

  • Dounia Louaguef,
  • Ghouti Medjahdi,
  • Sébastien Diliberto,
  • Klaus M. Seemann,
  • Thomas Gries,
  • Joelle Bizeau,
  • Damien Mertz,
  • Eric Gaffet and
  • Halima Alem

Beilstein J. Nanotechnol. 2025, 16, 2285–2295, doi:10.3762/bjnano.16.157

Graphical Abstract
  • unique magnetic properties, small size, and biocompatibility, which enable them to be used in a wide range of biomedical applications. These applications include magnetic resonance imaging, magnetic separation, targeted drug delivery, and hyperthermia [1][2]. Magnetic hyperthermia has been extensively
  • as a promising alternative due to its biocompatibility, high magnetic moment, and potential for use in hyperthermia and drug delivery applications [10]. Manganese is naturally present in the human body and exists primarily as Mn2+ and Mn3+ ions, making it more biocompatible than cobalt. The
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2025

Visualizing nanostructures in supramolecular hydrogels: a correlative study using confocal and cryogenic scanning electron microscopy

  • Shaun M. Smith,
  • Ferdinando Malagreca,
  • Jacqueline Hicks,
  • Giuseppe Mantovani,
  • David B. Amabilino,
  • Christopher Parmenter and
  • Lluïsa Pérez-García

Beilstein J. Nanotechnol. 2025, 16, 2274–2284, doi:10.3762/bjnano.16.156

Graphical Abstract
  • ; microscopies; nanostructure; supramolecular hydrogel; Introduction Hydrogels, whether based on self-assembling molecules or cross-linked polymers, are useful in fields ranging from tissue engineering to drug delivery and biosensing [1][2][3][4][5]. Their high water content and soft, porous structure make them
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2025

Optical bio/chemical sensors for vitamin B12 analysis in food and pharmaceuticals: state of the art, challenges, and future outlooks

  • Seyed Mohammad Taghi Gharibzahedi and
  • Zeynep Altintas

Beilstein J. Nanotechnol. 2025, 16, 2207–2244, doi:10.3762/bjnano.16.153

Graphical Abstract
PDF
Album
Review
Published 05 Dec 2025

Ultrathin water layers on mannosylated gold nanoparticles

  • Maiara A. Iriarte Alonso,
  • Jorge H. Melillo,
  • Silvina Cerveny,
  • Yujin Tong and
  • Alexander M. Bittner

Beilstein J. Nanotechnol. 2025, 16, 2183–2198, doi:10.3762/bjnano.16.151

Graphical Abstract
  • century [3]. They are investigated, for example, regarding drug delivery [4], but they are also parts of actual products, for example, of sensors [5]. All this is based on the ease of synthesis, chemical stability, size tuneability, and unique optical properties [6]. The extreme dependence of the
  • sensing, imaging, or drug delivery systems. The success of these platforms stems from their dispersion in water, stability, and biocompatibility in fully hydrated states, as well as in biological fluids. Our investigation shows a novel approach to these particles by testing the hydration properties under
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2025

Rapid synthesis of highly monodisperse AgSbS2 nanocrystals: unveiling multifaceted activities in cancer therapy, antibacterial strategies, and antioxidant defense

  • Funda Ulusu,
  • Adem Sarilmaz,
  • Yakup Ulusu,
  • Faruk Ozel and
  • Mahmut Kus

Beilstein J. Nanotechnol. 2025, 16, 2105–2115, doi:10.3762/bjnano.16.145

Graphical Abstract
  • specificity. Integration with emerging nanomedicine approaches such as theranostics, controlled drug delivery, and precision oncology could further advance the translational potential of AgSbS2 NCs. Synthesis procedure (a), XRD pattern (b), crystal geometry (c), and FTIR spectrum (d) of the synthesized NCs
PDF
Album
Full Research Paper
Published 19 Nov 2025

Toward clinical translation of carbon nanomaterials in anticancer drug delivery: the need for standardisation

  • Michał Bartkowski,
  • Francesco Calzaferri and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2025, 16, 2092–2104, doi:10.3762/bjnano.16.144

Graphical Abstract
  • nanotubes, and carbon dots, have attracted considerable interest as nanocarriers for drug delivery due to their unique physicochemical properties. Their high surface area, biocompatibility, and modifiable surface chemistry make them highly attractive for a range of biomedical applications. However, concerns
  • nanomaterials (CNMs) have been largely developed as nanocarriers for drug delivery due to their biocompatibility, high surface area, tuneable physicochemical properties, and targeting capabilities [13][14]. However, CNMs also present a subset of challenges, including toxicity concerns, expensive and time
  • translational hurdles, extend broadly across therapeutic contexts. Regardless of indication, many of the key challenges in standardising CNM-based drug delivery systems remain largely the same. Using carbon nanocarrier to address the global burden of cancer Cancer, a group of diseases characterised by
PDF
Album
Supp Info
Perspective
Published 18 Nov 2025

Beyond the shell: exploring polymer–lipid interfaces in core–shell nanofibers to carry hyaluronic acid and β-caryophyllene

  • Aline Tavares da Silva Barreto,
  • Francisco Alexandrino-Júnior,
  • Bráulio Soares Arcanjo,
  • Paulo Henrique de Souza Picciani and
  • Kattya Gyselle de Holanda e Silva

Beilstein J. Nanotechnol. 2025, 16, 2015–2033, doi:10.3762/bjnano.16.139

Graphical Abstract
  • conventional fibrous materials. Their flexibility in fabrication allows for integration into a broad range of applications, from drug delivery scaffolds to composite biomaterials, contributing to their increasing relevance in both scientific research and industrial development [11][12][13][14]. To leverage the
  • thermoplastic known for its biodegradability, biocompatibility, and bioabsorbability [20][21]. Highly attractive due to its versatile physical, chemical, and biological properties, PLA is a suitable option for manufacturing tissue engineering scaffolds, implantable devices, and drug delivery systems, holding
  • profile can be modulated, and the initial burst release minimized [7]. Beyond drug delivery, an ideal biomedical scaffold should support cellular attachment while providing effective drug release; balancing these functions is crucial for promoting tissue formation. Achieving this balance in electrospun
PDF
Album
Full Research Paper
Published 12 Nov 2025

PEGylated lipids in lipid nanoparticle delivery dynamics and therapeutic innovation

  • Peiyang Gao

Beilstein J. Nanotechnol. 2025, 16, 1914–1930, doi:10.3762/bjnano.16.133

Graphical Abstract
  • strategies in LNP-based drug delivery systems, approaches are being explored. These include integrating functional groups into PEG lipids for ligand conjugation and improved cell-specific targeting, as well as developing PEG alternatives to mitigate anti-PEG antibody associated immunogenicity [7][8]. This
PDF
Album
Review
Published 30 Oct 2025

Phytol-loaded soybean oil nanoemulsion as a promising alternative against Leishmania amazonensis

  • Victória Louise Pinto Freire,
  • Mariana Farias Alves-Silva,
  • Johny W. de Freitas Oliveira,
  • Matheus de Freitas Fernandes-Pedrosa,
  • Alianda Maira Cornélio,
  • Marcelo de Souza-Silva,
  • Thayse Silva Medeiros and
  • Arnóbio Antônio da Silva Junior

Beilstein J. Nanotechnol. 2025, 16, 1826–1836, doi:10.3762/bjnano.16.126

Graphical Abstract
  • pharmaceutical application by reducing bioavailability [18]. To overcome these limitations, the incorporation of phytol into nanostructured delivery systems, has been proposed to improve its solubility, stability, and intracellular delivery efficiency [19]. Nanotechnology-based drug delivery systems that
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2025

Exploring the potential of polymers: advancements in oral nanocarrier technology

  • Rousilândia de Araujo Silva,
  • Igor Eduardo Silva Arruda,
  • Luise Lopes Chaves,
  • Mônica Felts de La Roca Soares and
  • Jose Lamartine Soares Sobrinho

Beilstein J. Nanotechnol. 2025, 16, 1751–1793, doi:10.3762/bjnano.16.122

Graphical Abstract
  • , Brazil 10.3762/bjnano.16.122 Abstract Polymers play a pivotal role in various drug delivery systems due to their versatility, with polymeric nanoparticles showing significant potential to overcome physiological barriers associated with oral administration. This review examines the current advancements
  • permeability, critical factors for effective oral drug delivery, are discussed in detail. Furthermore, nanoparticle synthesis methods that enable controlled release profiles, optimized biodistribution, and improved therapeutic efficacy are also explored. Thus, polymers represent a dynamic platform for
  • developing diverse nanocarriers for oral applications, and this review provides a valuable theoretical foundation for understanding the strategies currently employed in this field. Keywords: drug delivery; nanoparticle; oral administration; polymer; polymeric nanoparticle; Review 1 Introduction The oral
PDF
Album
Review
Published 10 Oct 2025

Advances of aptamers in esophageal cancer diagnosis, treatment and drug delivery

  • Yang Fei,
  • Hui Xu,
  • Chunwei Zhang,
  • Jingjing Wang and
  • Yong Jin

Beilstein J. Nanotechnol. 2025, 16, 1734–1750, doi:10.3762/bjnano.16.121

Graphical Abstract
  • lifestyle-related risk factors. However, the discovery of aptamers and the development of nanocarriers bring great benefits to the diagnosis, treatment, and targeted drug delivery of EC. Aptamers or peptide aptamers as biosensors or therapeutic agents for the diagnosis or treatment of EC, aptamer–drug
  • conjugates and aptamer-functionalized drug nanocarriers for targeted drug delivery in esophageal cancer are reviewed in this paper. In addition, we expect investigators to pay special attention to improving aptamer permeability and stability to accelerate aptamer clinical transformation. In conclusion
  • , leveraging the high target specificity of well-selected aptamers may bring new breakthroughs in the diagnosis, treatment and drug delivery of EC. Keywords: aptamers; detection; drug delivery; esophageal cancer; esophageal squamous cell carcinoma; therapy; Review 1 Introduction Esophageal cancer (EC) is
PDF
Album
Review
Published 06 Oct 2025

Multifunctional anionic nanoemulsion with linseed oil and lecithin: a preliminary approach for dry eye disease

  • Niédja Fittipaldi Vasconcelos,
  • Almerinda Agrelli,
  • Rayane Cristine Santos da Silva,
  • Carina Lucena Mendes-Marques,
  • Isabel Renata de Souza Arruda,
  • Priscilla Stela Santana de Oliveira,
  • Mércia Liane de Oliveira and
  • Giovanna Machado

Beilstein J. Nanotechnol. 2025, 16, 1711–1733, doi:10.3762/bjnano.16.120

Graphical Abstract
  • for therapeutic effectiveness. In contrast to traditional drug delivery systems (DDS), a functional ophthalmic nanoemulsion was specifically designed to alleviate symptoms of DED by leveraging its antioxidant and osmoprotective properties. The study evaluated the optimal concentration of lecithin
  • disease cases [13]. Advances in nanomedicine have provided effective solutions, particularly for treating DED [1]. To address challenges in topical ocular drug delivery and to develop products that mimic tear film composition, ocular nanosystems (ONSs) with diameters ranging from 50 to 300 nm are being
  • investigated as potential drug delivery technologies [14][15]. However, our formulation is not a drug delivery system (DDS) since it lacks pharmacological agents. Instead, it is a functional nanoemulsion designed to mimic the tear film’s properties and provide antioxidant and osmoprotective benefits, aiming to
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2025

Prospects of nanotechnology and natural products for cancer and immunotherapy

  • Jan Filipe Andrade Santos,
  • Marcela Bernardes Brasileiro,
  • Pamela Danielle Cavalcante Barreto,
  • Ligiane Aranha Rocha and
  • José Adão Carvalho Nascimento Júnior

Beilstein J. Nanotechnol. 2025, 16, 1644–1667, doi:10.3762/bjnano.16.116

Graphical Abstract
  • dose of its active ingredients [96]. These characteristics have made nanoparticles widely used in medicines, medical applications, and the food industry, as they provide increased shelf life, improved drug delivery, and enhanced therapeutic efficacy [97]. Various methods, such as chemical reduction
  • permeability, which can help overcome challenges like multidrug resistance [23]. Moreover, this technology enables better encapsulation of active pharmaceutical ingredients (APIs), contributing to improved drug delivery to the tumor region and promoting new therapeutic approaches for cancer treatment [99]. In
  • T cells, controllable size, and protection of the tumor environment [131]. They also help by reducing adverse effects, increasing antitumor response, as well as increasing solubility and precision in drug delivery [132][133]. Seeking a new pharmaceutical application for procyanidines (PCs) as APIs
PDF
Album
Review
Published 22 Sep 2025

Venom-loaded cationic-functionalized poly(lactic acid) nanoparticles for serum production against Tityus serrulatus scorpion

  • Philippe de Castro Mesquita,
  • Karla Samara Rocha Soares,
  • Manoela Torres-Rêgo,
  • Emanuell dos Santos-Silva,
  • Mariana Farias Alves-Silva,
  • Alianda Maira Cornélio,
  • Matheus de Freitas Fernandes-Pedrosa and
  • Arnóbio Antônio da Silva-Júnior

Beilstein J. Nanotechnol. 2025, 16, 1633–1643, doi:10.3762/bjnano.16.115

Graphical Abstract
  • vitro, creates a challenge for drug delivery systems aiming to effectively target affected tissues or cells [14][15]. Nanocarriers have been widely studied for enabling prolonged circulation and sustained drug release over time, depending on their structural properties [16][17]. Therefore, protein
PDF
Album
Full Research Paper
Published 17 Sep 2025

Transient electronics for sustainability: Emerging technologies and future directions

  • Jae-Young Bae,
  • Myung-Kyun Choi and
  • Seung-Kyun Kang

Beilstein J. Nanotechnol. 2025, 16, 1545–1556, doi:10.3762/bjnano.16.109

Graphical Abstract
  • stimulators, and drug delivery vehicles, as well as environmentally benign electronics for soil or aquatic disposal. Despite their potential, key challenges remain in expanding the material set for diverse functionalities, achieving high-density integration for advanced operations, and enabling precise
  • postoperative recovery period [10] (Figure 1c), and drug delivery vehicles developed to enable remotely triggered, programmable release of therapeutic agents, followed by complete degradation without the need for extraction [8][25]. Recent advances in minimally invasive delivery techniques have further expanded
PDF
Album
Perspective
Published 04 Sep 2025

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles

  • Shoronia N. Cross,
  • Katalin V. Korpany,
  • Hanine Zakaria and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2025, 16, 1504–1521, doi:10.3762/bjnano.16.106

Graphical Abstract
  • Michael addition; Introduction Iron oxide nanoparticles (IONPs) have been the subject of an immense body of research in the field of biomedicine, where their magnetic properties are appealing for such applications as MRI contrast agents [1], tumor hyperthermia [2], and magnetic drug delivery [3
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2025

Nanomaterials for biomedical applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Filippo Pierini,
  • Seda Kizilel and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 1499–1503, doi:10.3762/bjnano.16.105

Graphical Abstract
  • , Istanbul, Turkey 10.3762/bjnano.16.105 Keywords: biomedical applications; drug delivery; nanocarriers; nanomaterials; nanomedicine; nanoparticles; polymeric nanoparticles; tissue regeneration; Medicine has rapidly advanced over the last few decades, and nanotechnology has played a significant role in
  • adverse effects and increasing the success rate of the delivery. Since nanomaterials can be tunable, the vast majority of health sectors are investigating their potential in a wide range of applications, such as targeted drug delivery, gene therapy, tissue regeneration, imaging, and diagnostic tools [2
  • strength, more effective functioning, and biological compatibility [7]. Nanomaterials play a leading role in drug delivery and gene transportation. Older methods for drug delivery usually do work well, miss their intended targets, and cause unwanted side effects. Nanotechnology helps with this challenge by
PDF
Editorial
Published 28 Aug 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
PDF
Album
Review
Published 27 Aug 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • application of metalloantibiotics is limited by their potential toxicity, instability, and lack of target specificity. Encapsulating metalloantibiotics in drug delivery systems, such as liposomes, nanoparticles, and polymeric carriers, could mitigate these challenges, enhancing their therapeutic index and
  • .; Liu, G. Nanoscale 2025, 17, 5605–5628. doi:10.1039/D4NR04774E ]. This review explores the potential of encapsulated metalloantibiotics as a new frontier in antimicrobial therapy. We address the mechanisms by which drug delivery systems can stabilize and direct metalloantibiotics to their biological
  • mechanisms of nanotechnology-based drug delivery systems, followed by their integration with metal-based complexes. Finally, it discusses the challenges and future perspectives of this emerging field, emphasizing its potential to revolutionize the fight against bacterial infections and antimicrobial
PDF
Album
Review
Published 15 Aug 2025
Other Beilstein-Institut Open Science Activities