Search results

Search for "hydrothermal" in Full Text gives 216 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • advanced methods, including sol–gel, hydrothermal, solvothermal, precipitation and template-assisted techniques [53]. The synthesis method chosen often depends on factors such as the desired crystal structure, particle size, surface area, and photocatalytic activity required for the specific application
  • pore sizes, fast charge transfer, high density and long lifetime of photoinduced charges, and strong interaction between ZnO and N,O-containing biochar [81]. Roy and colleagues [82] effectively synthesized a rGO-ZnO composite functionalized with ferrocene through a simple hydrothermal method. This Fc
  • , attributed to the increased specific surface area and absorption capacity. Using a one-step hydrothermal process, Wu et al. [69] synthesized Bi-bridged Z-scheme BiOCl/Bi2O3 heterojunctions. The constructed binary photocatalysts exhibited 94.79% TC degradation efficiency owing to the enhanced separation of
PDF
Album
Review
Published 25 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • microorganisms. Nanomaterials, particularly nanohydroxyapatite (nHA), have garnered attention for sustaining rhizobacterial viability, high loading capacity, high biodegradability, and biocompatibility, which facilitate microbial interactions. In this study, nHA was synthesized using a hydrothermal method and
  • productivity. Results and Discussion Synthesis of nanohydroxyapatite The synthesis of nHA was effectively achieved through a hydrothermal method, conducted at a temperature of 230 °C for a duration of 48 h. The resultant nHA material was obtained in the form of white powder. The formation of nHA occurred
  • (Tb) are gram-positive rhizobacteria with rod-like morphology, as illustrated in Figure 10. Conclusion Nanohydroxyapatite (nHA) was synthesized successfully using a hydrothermal method, and XRD analysis confirmed its alignment with the ICSD standard #154781. The measured crystal size of nHA was 34.27
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

Comparison of organic and inorganic hole transport layers in double perovskite material-based solar cell

  • Deepika K and
  • Arjun Singh

Beilstein J. Nanotechnol. 2025, 16, 119–127, doi:10.3762/bjnano.16.11

Graphical Abstract
  • -circuit current density (JSC) of 13.26 mA/cm2, and a fill factor (FF) of 66%. The PCE is close to that of the Pt-based counter electrode (PCE = 6.86%). Akman [3] used hydrothermal methods to synthesize the photoanodes with different doping sources to further improve the stability of DSSCs. For 1.0 mol
  • nanorods were synthesized via a hydrothermal process, and it was found that they had a larger saturation magnetization [27]. Simulation results yielded PCEs of over 26%, but there are still challenges associated with the application of DPSCs [28]. Results and Discussion In this simulation study, Cu2O and
PDF
Album
Full Research Paper
Published 06 Feb 2025

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • desired morphology is essential for a given application. Generally, practical techniques for obtaining nanomaterials are sol–gel method, chemical and physical vapour deposition, hydrothermal method, ball milling, grinding, lithography, etching, and laser ablation [14][15][16][17][18]. The morphology
PDF
Album
Full Research Paper
Published 18 Dec 2024

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • thermal sublimation [18][23], thermal evaporation [21], hydrothermal method [31][32][33], and other facile chemical/physical routes [34]. The changes in fabrication and processing conditions will influence the shape and size of ZnO nanostructures. When using CVD, vapour sources can be Zn powder or a
  • , respectively. Meanwhile, their thickness is less than 50 nm. Apart from these sheets, we have also collected images of sheets glued with long nanorods that grew along the sheet width, named S2 in Figure 5c. Such two-dimensional structures of ZnO are different from those prepared by hydrothermal process [46
PDF
Album
Full Research Paper
Published 11 Nov 2024

Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication

  • Muhammed Taha Durmus and
  • Ebru Bozkurt

Beilstein J. Nanotechnol. 2024, 15, 1369–1375, doi:10.3762/bjnano.15.110

Graphical Abstract
  • , Turkey 10.3762/bjnano.15.110 Abstract In this study, we aimed to synthesize new carbon dot structures (CDs) in a single step by using the plant Rheum Ribes for the first time and to contribute to the studies in the field of diode fabrication by using the new CDs. The CDs were obtained by hydrothermal
  • nanostructures are obtained by using small nanoscale blocks. The hydrothermal synthesis method, which is a bottom-up method, is generally used in the synthesis of CDs. A very wide range of source materials, simple reaction equipment, and easy control of reaction conditions are the features that make this method
  • switching speed and low forward voltage [14]. In this study, CDs were synthesized in a single step by hydrothermal synthesis using Rheum Ribes, a natural material, for the first time, and diodes were fabricated using the new CDs. To our knowledge, studies on diodes with CDs obtained from natural materials
PDF
Album
Full Research Paper
Published 07 Nov 2024

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • 17104, Korea 10.3762/bjnano.15.74 Abstract A facile approach was employed to fabricate MIL-100(Fe) materials from Fe2O3 nanoparticles through a conventional hydrothermal reaction without the presence of HF and HNO3. Effects of trimesic acid content in the reaction system on the quality and CO2/N2
  • . Importantly, this route opens a new approach to utilizing Fe2O3-based waste materials from the iron and steel industry in manufacturing Fe-based MIL-100 materials. Keywords: CO2/N2 separation; Fe2O3 nanoparticles; hydrothermal reaction; IAST-predicted CO2/N2 selectivity; MIL-100(Fe); Introduction Metal
  • using metallic iron and iron salts, along with HF and HNO3, in a conventional hydrothermal reactor operated at high temperatures [9][10]. While HF and HNO3 improve yield and quality of MIL-100(Fe), they are harmful to the environment because of their toxicity and corrosiveness. As a result, scientists
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • to degrade 10 mg/L of MB [23]. Moreover, when MoS2 is mixed with SnO2, the MB photodegradation reaches up to ≈99.5% within 5 min. This rapid degradation occurred when 400 mg/L of the catalyst was used to degrade 3.2 mg/L of MB [24]. These results concerned materials fabricated using the hydrothermal
  • . Those authors have used other mixed composites such as MoS2-GO and MoS2-ZnO prepared by the hydrothermal [22][23] method with photocatalyst loading of 10 to 100 mg, which is ten to hundredfold higher than the ones used for the current PD study. Furthermore, this study allowed higher stability of the
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue

  • Dalia Chávez-García,
  • Mario Guzman,
  • Viridiana Sanchez and
  • Rubén D. Cadena-Nava

Beilstein J. Nanotechnol. 2024, 15, 755–766, doi:10.3762/bjnano.15.63

Graphical Abstract
  • . This study introduces an innovative approach to mitigate water pollution through the synthesis of nanomaterials using biomass-derived carbon quantum dots (CQDs) from grape pomace and watermelon peel. Utilizing the hydrothermal method at temperatures between 80 and 160 °C over periods ranging from 1 to
  • quantum dots (CQDs) through a hydrothermal method using biomass from watermelon peels and grape pomace. This method is chosen for its ease of production, low cost, and scalability. We aim to evaluate the potential of CQDs as catalysts in the photocatalytic degradation of methylene blue (MB) dye in
  • top-down approaches such as arc discharge and laser ablation, and bottom-up methods such as hydrothermal and microwave synthesis [7][22] Biomass sources for CQD synthesis include eggshells, papaya peel, and lemon peel [23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39]. Applications
PDF
Album
Full Research Paper
Published 25 Jun 2024

Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties

  • Monika Ozga,
  • Eunika Zielony,
  • Aleksandra Wierzbicka,
  • Anna Wolska,
  • Marcin Klepka,
  • Marek Godlewski,
  • Bogdan J. Kowalski and
  • Bartłomiej S. Witkowski

Beilstein J. Nanotechnol. 2024, 15, 743–754, doi:10.3762/bjnano.15.62

Graphical Abstract
  • and Technology, Wybrzeze Wyspiańskiego 27, 50–370 Wroclaw, Poland 10.3762/bjnano.15.62 Abstract This paper presents an investigation into the influence of repeating cycles of hydrothermal growth processes and rapid thermal annealing (HT+RTA) on the properties of CuO thin films. An innovative
  • hydrothermal method ensures homogeneous single-phase films initially. However, their electrical instability and susceptibility to cracking under the influence of temperature have posed a challenge to their utilization in electronic devices. To address this limitation, the HT+RTA procedure has been developed
  • devices. Keywords: CuO; hydrothermal method; rapid thermal annealing; thin films; Introduction Copper(II) oxide is a p-type semiconductor possessing a narrow bandgap, along with many beneficial electrical, optical, and magnetic properties. Particularly at the nanoscale, these properties set themselves
PDF
Album
Full Research Paper
Published 24 Jun 2024

Simultaneous electrochemical determination of uric acid and hypoxanthine at a TiO2/graphene quantum dot-modified electrode

  • Vu Ngoc Hoang,
  • Dang Thi Ngoc Hoa,
  • Nguyen Quang Man,
  • Le Vu Truong Son,
  • Le Van Thanh Son,
  • Vo Thang Nguyen,
  • Le Thi Hong Phong,
  • Ly Hoang Diem,
  • Kieu Chan Ly,
  • Ho Sy Thang and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 719–732, doi:10.3762/bjnano.15.60

Graphical Abstract
  • storage derived from their conjugate structure makes them effectively utilizable over the full light spectrum [13][14]. GQDs can be prepared through solvothermal/hydrothermal processes or carbonization from suitable organic molecules (polymers or biomass) [15]. Biomass waste (e.g., agricultural residues
  • electrodes used in electrochemical analysis. To the best of our knowledge, there are only few reports on TiO2/GQDs for electrochemical analysis. In the present work, TiO2/GQDs were prepared from coffee grounds and peroxo titanium complexes by a hydrothermal process. The simultaneous determination of URI and
  • synthesized in a hydrothermal process. 0.25 g of TiO2 and 12.5 mL of 10 M NaOH were mixed under ultrasonic stirring. The suspension was then transferred to a teflon-lined stainless steel autoclave and heated to 130 °C for 10 h. The resulting white solid was separated by centrifugation and rinsed several times
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024

Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy

  • Yanyan Wen,
  • Ningning Song,
  • Yueyou Peng,
  • Weiwei Wu,
  • Qixiong Lin,
  • Minjie Cui,
  • Rongrong Li,
  • Qiufeng Yu,
  • Sixue Wu,
  • Yongkang Liang,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2024, 15, 569–579, doi:10.3762/bjnano.15.49

Graphical Abstract
  • when combined with RF hyperthermia. Using these CUR-Fe@MnO2 NFs combined with RF, hyperthermia is a candidate method for the targeted treatment of HCC via combined chemotherapy/hyperthermia. Results and Discussion Characterization The Fe3O4 NCs were prepared by a microwave hydrothermal synthesis method
  • Shanghai Zhongqiao Xinzhou Biotechnology Co., Ltd. (Shanghai, China). Preparation of Fe3O4 NCs Fe3O4 NCs were synthesized using a microwave hydrothermal synthesis method with a computer microwave ultrasonic synthesis/extraction instrument (XH-300A+, Beijing Xianghu Technology Development Co., Ltd., Beijing
PDF
Album
Full Research Paper
Published 22 May 2024

Photocatalytic degradation of methylene blue under visible light by cobalt ferrite nanoparticles/graphene quantum dots

  • Vo Chau Ngoc Anh,
  • Le Thi Thanh Nhi,
  • Le Thi Kim Dung,
  • Dang Thi Ngoc Hoa,
  • Nguyen Truong Son,
  • Nguyen Thi Thao Uyen,
  • Nguyen Ngoc Uyen Thu,
  • Le Van Thanh Son,
  • Le Trung Hieu,
  • Tran Ngoc Tuyen and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 475–489, doi:10.3762/bjnano.15.43

Graphical Abstract
  • hydrothermal method was reported [7]. The effect of oleylamine concentration on the physicochemical properties of CF synthesized via a solvothermal process has been presented [8]. However, ferrites exhibit self-agglomeration due to their magnetic nature. Combining different functional materials to prepare
  • this study, we describe an eco-friendly facile hydrothermal method to prepare magnetic CF/GQDs nanocomposites. The CF nanoparticles, 8–10 nm in diameter, were highly dispersed in a graphene quantum dot matrix and directly formed at 200 °C. Stacking GQDs sheets onto the CF nanoparticles resulted in CF
  • CF/GQDs synthesized at hydrothermal temperatures of 140, 180 and 200 °C are shown in Figure 4a–c. The morphology reveals that CF/GQDs consist of heavily agglomerated particles, several hundreds of nanometers in diameter, because of their magnetic nature. Figure 4d and Figure 4e present the TEM images
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • photodetector based on CuO nanoparticles (CuO NPs) and ZnO nanorods (ZnO NRs). CuO NPs were loaded onto ZnO NRs by a cost-effective, simple hydrothermal method at low synthesis temperature [38]. The CuO/ZnO photodetector was characterized, and its sensitivity was evaluated regarding visible-light wavelengths
  • process of the ZnO NRs was presented in a previous paper [63]. At the beginning, ZnO NPs (5% dispersion in ethanol) were spin-coated onto cleaned glass substrates at 3000 rpm for 30 s. Then, the sample was heat-treated at 90 °C. ZnO NRs were grown by a hydrothermal method from Zn(NO3)2·6H2O and HMTA (1:1
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • storage and conversion [19][20][21], quantum materials [22][23], and others [24]. This wide range of potential applications makes the development of reliable scaling processes crucial. Usually, LDHs are obtained by different synthesis procedures such as co-precipitation [25], hydrothermal synthesis [13
  • ], sol–gel methods [26], mechanochemistry [27], or the epoxide route [28], to name a few [29]. Among them, hydrothermal methods based on ammonium-releasing reagents (ARRs), commonly urea or hexamethylenetetramine, are especially interesting since they allow one to obtain large and highly crystalline
  • (Table 1). Supporting Information File 1, Table S6 compares the obtained STY values with those ones from other synthesis approaches such as co-precipitation and hydrothermal [39][40][41][65][66][67][68][69], mechanochemistry [27], and continuous flow methods [43][44]. After the limits for the scale-up of
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • , ACS grade, 7697-37-2; and sodium azide, Sigma, 99.8%, 26628-22-8. Lacey carbon, 300 mesh, copper grids (product #01895) from Ted Pella, Inc. were used for electron microscopy. Methods Hexagonal nanoceria particles (4.2 ± 1.2 nm) (mean ± SD) were synthesized using a hydrothermal method [55] and
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • nanoparticles and a carbon matrix using a hydrothermal route has been reported, and the enhancement in the electrochemical performance of Ge@C electrodes was demonstrated [33]. In this work, a one-pot synthesis route has been followed to prepare a Ge@C composite using an in situ magnesiothermic reduction of
  • higher specific current of 5000 mA·g−1. Other composites were also prepared using hydrothermal and direct solid-state coupling. However, these routes did not provide such a good chemical contact between the components, as demonstrated by their low specific capacity and poor rate performance. Experimental
  • with DI water and drying at 70 °C for 12 h, was denoted as Ge/C-iM750. An analogous route to our previous work [29] without adding activated carbon was applied to synthesize pure germanium (denoted as Ge). Hydrothermal coupling to synthesize Ge/C-HT180 composite The hydrothermal synthesis was carried
PDF
Album
Full Research Paper
Published 26 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • hydrothermal process with glucose as a precursor undergoing carbonization. Different spectroscopic techniques were used to analyze the optical characteristics of GQDs, including UV–visible, photoluminescence, FTIR, and Raman spectroscopy. Atomic force microscopy, transmission electron microscopy, and X-ray
  • were taken from Fisher Scientific. For all experimental work and the preparation of stock solutions, deionized (DI) water was used. Synthesis of graphene quantum dots Graphene quantum dots (GQDs) were synthesized using glucose as a precursor material via a hydrothermal route [29] with some
  • modifications. Glucose (2 g) was dissolved in 20 mL DI water and filtered for the removal of undissolved particles through Whatman filter paper. In the above solution, 20 mL of conc. H2SO4 was added dropwise until it turned brownish under constant stirring. The hydrothermal treatment was conducted by heating
PDF
Album
Full Research Paper
Published 09 Jun 2023

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • octahedron layers in the ⟨100⟩α direction, coupled by van der Waals interactions, and the octahedron layers stack in the ⟨010⟩α direction by shifting by a/2. Experimental Hydrothermal synthesis of h-MoO3 Molybdenum oxide h-MoO3 was synthesized by a traditional hydrothermal synthesis method. In a routine
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
PDF
Album
Review
Published 01 Jun 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • great interest because ethanol is an inexpensive compound and can be produced by biomass. However, it can be also largely found as pollutant in air and wastewater emerging from industrial activities. There are several pathways to convert ethanol to hydrogen, namely thermochemical, hydrothermal
PDF
Album
Full Research Paper
Published 22 May 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • ] prepared 1-D Bi2WO6 nanofibers with a flower-like morphology by using a hydrothermal process for the degradation of rhodamine B dye. Under visible-light irradiation, the 1-D nanofiber photocatalyst reached a degradation rate of 78.2% after 50 min. Because of their extraordinarily small size, 0-D
  • techniques have been developed to synthesise 3-D Bi-based nanostructures with different morphologies, including solvothermal/hydrothermal and sol–gel processes, mechanical exfoliation, solid-state reactions, chemical vapour deposition, and microwave-assisted techniques [106]. These 3-D photocatalysts have
  • . The final product might have some impurities, relatively large particles, and only a small degree of homogeneity. Large volumes of nanopowder can be produced using a relatively simple apparatus via solid-state routes. Wet-chemical methods (such as electrospinning, sol–gel, hydrothermal, ultrasound, co
PDF
Album
Review
Published 03 Mar 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • only a minor role. Furthermore, during the hydrothermal synthesis of CQDs from o-phenylenediamine, the used precursor was able to form slowly a thermodynamically stable polyaniline and further conjugated sp2 domains with NH2 groups. Thus, the formed CQDs do not have reactive centers to generate singlet
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • makes them ideal candidates for magnetic-assisted targeted drug delivery [12]. Nanoscale magnetite can be obtained through well-known synthesis routes, such as hydrothermal synthesis, thermal decomposition, or co-precipitation [10][11]. Each of these synthetic approaches has certain advantages and
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • materials (Figure 1b). This agrees with the results of previous publications in which hydrothermal methods were applied [24][25][26]. The SEM image of the g-C3N4 material shows the uniform nanosheets that were fabricated by the melamine pyrolysis method (Figure 1c). After the deposition of 2D materials MoS2
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022
Other Beilstein-Institut Open Science Activities