Search results

Search for "ion beam" in Full Text gives 214 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • Kafi Devi Usha Rani Arun Kumar Divya Gupta Sanjeev Aggarwal Ion Beam Centre, Department of Physics, Kurukshetra University, Kurukshetra-136119, India 10.3762/bjnano.16.25 Abstract In this study, zinc telluride (ZnTe) films were grown on quartz substrates at room temperature, 300 °C, 400 °C, 500
  • ± 0.30 nm for the films deposited at room temperature, 300 °C, 400 °C, 500 °C, and 600 °C, respectively. The structural aspects of the ZnTe/Qz films were analysed using grazing incidence X-ray diffraction (GXRD) on a Bruker AXS D8 Advance with Cu Kα radiation (λ = 1.5406 Å) available at Ion Beam Centre
  • -3600 Plus) equipped with Integrating Sphere Assembly (Model-ISR-603) in the wavelength range of 200–2000 nm (accuracy 1 Å) available at Ion Beam Centre, Kurukshetra University. The photoluminescence (PL) emission spectra of ZnTe/Qz films were recorded using a HORIBA Scientific (Fluorescence 3.5
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • ; Introduction Nanoscale fabrication of free-form structures via methods like focused electron or ion beam induced deposition (FEBID/FIBID) requires precise beam control and sufficient knowledge of key properties of the precursor material used [1]. In addition, a reliable prediction of the expected deposit shape
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates

  • Norma Salvadores Farran,
  • Limin Wang,
  • Primoz Pirih and
  • Bodo D. Wilts

Beilstein J. Nanotechnol. 2025, 16, 1–10, doi:10.3762/bjnano.16.1

Graphical Abstract
  • . The domains in lattice orientation {100} exhibited polarization conversion. The structure inferred from optical measurements was confirmed using conventional and focused ion beam scanning electron microscopy (FIB-SEM). By averaging the reciprocal space images obtained from different lattice
  • focused ion beam electron microscope, we exposed the diamond lattice chitinous network underneath the cortex of intact scales (Figure 2b,c). The upper cortex is ≈1 μm thick and has undulations spaced about 5 μm apart (Figure 2b), which were visible in the light microscopy images ( Figure 1b). The lower
  • , Watford, UK). The settings were: sputter time 120 s, current 40 mA, and background pressure 0.08 mbar. Cross-sectional images of single scales were recorded using a focused ion beam scanning electron microscope (Scios2, Thermo Fisher Scientific, Waltham, MA, USA) using an Everhart–Thornley detector and an
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2025

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • 10.3762/bjnano.15.115 Abstract Ion beam-induced deposition (IBID) using Pt(CO)2Cl2 and Pt(CO)2Br2 as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed
  • ability of data acquired from fundamental UHV surface science studies to provide insights that can be used to better understand the interactions between ions and precursors during IBID from inorganic precursors. Keywords: deposition; ion beam; nanostructure; organometallic; precursor; Introduction
  • Focused ion beam-induced deposition (FIBID) and focused electron beam-induced deposition (FEBID) are vacuum-based, charged-particle bottom-up nanofabrication techniques that directly fabricate metal containing nanostructures as a consequence of the reactions between ions or electrons and organometallic
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • ). However, parasitic strain can cause unforeseen static changes in the geometry of the RoI. This problem is addressed by focused ion beam (FIB) technology, which can be used as a strain engineering tool. We will refer to MEMS with a formed RoI as operational MEMS, or opMEMS for short. In contrast to
  • only for the visual assessment of the shape and dimensions of a structure, but also for the observation of movement and deflection of an opMEMS. At the same time, the ion beam allows for local doping of the substrate and anisotropic milling. The NanoLab 600i also provides three gas injection systems
  • a whole with schematic electrical connections, and (c) on a SEM image focused on the RoI, with path descriptions and ion beam milling lines marked. Influence of DRIE-milled openings on current leakage across the slit edge. (a) Conducting paths are electrically shorted by leakage along the edge of
PDF
Album
Full Research Paper
Published 23 Oct 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • Xiamen Medical College, Fujian, China School of Medicine and Dentistry, Griffith University, Gold Coast QLD 4222, Australia 10.3762/bjnano.15.97 Abstract Ion beam-induced heat damage in thermally low conductive specimens such as biological samples is gaining increased interest within the scientific
  • community. This is partly due to the increased use of FIB-SEMs in biology as well as the development of complex materials, such as polymers, which need to be analyzed. The work presented here looks at the physics behind the ion beam–sample interactions and the effect of the incident ion energy (set by the
  • acceleration voltage) on inducing increases in sample temperature and potential heat damage in thermally low conductive materials such as polymers and biological samples. The ion beam-induced heat for different ion beam currents at low acceleration voltages is calculated using Fourier’s law of heat transfer
PDF
Album
Full Research Paper
Published 27 Sep 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • , and they are classified according to the power sources used for the process (i.e., plasma-, direct current-, radiofrequency-, and ion beam-assisted coatings) [85]. All PVD processes are based on a vacuum chamber containing the material to be deposited, known as target, and the chosen substrate onto
  • which the deposition occurs. During electron beam evaporation, an electron beam is used to vaporize the target material, while during sputtering, a high-energy ion beam is used to bombard the target. In both cases, atoms are ejected from the target and subsequently condense onto the substrate. The
PDF
Album
Review
Published 16 Aug 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • Alexander V. Rumyantsev Nikolai I. Borgardt Roman L. Volkov Yuri A. Chaplygin National Research University of Electronic Technology - MIET, Bld. 1, Shokin Square, Zelenograd, Moscow, 124498, Russia 10.3762/bjnano.15.61 Abstract The evolution of a multilayer sample surface during focused ion beam
  • understanding of the sputtering process, the distribution of oxygen atoms in the redeposited layer derived from the numerical data was compared with the corresponding elemental map acquired by energy-dispersive X-ray microanalysis. Keywords: electron microscopy; focused ion beam; level set simulation
  • ; multilayer substrate; silicon; silicon dioxide; sputtering; Introduction The focused ion beam (FIB) technique is an effective method for surface nanostructuring. It is based on the local removal of material by sputtering with a narrow beam of, typically, gallium ions. This feature of the FIB method makes it
PDF
Album
Full Research Paper
Published 24 Jun 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • using focused ion beam (FIB) milling and shown as an electron tilt image in Figure 1b, clearly demonstrates the Gaussian shape. For lithography applications, however, both the long tails and the Gaussian cross section are highly undesirable. The tails may form interconnects to neighboring lines, and the
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • fabrication on Si and Ge by 100 keV Ar+ ion beam bombardment is discussed. The irradiation was performed in the ion fluence range of ≈3 × 1017 to 9 × 1017 ions/cm2 and at an incident angle of θ ≈ 60° with respect to the surface normal. The investigation focuses on topographical studies of pattern formation
  • clustering of defects leads to a subsequent increase of the damage peak in irradiated samples (for an ion fluence of ≈9 × 1017 ions/cm2) compared to that in unirradiated samples. Keywords: atomic force microscopy; ion beam; nanopatterns; radiation damage; Rutherford backscattering spectrometry; transmission
  • structures. Although these structures may not be visible to the naked eye, they certainly have a visible impact on the mentioned applications. Nanopatterning is a very delicate procedure that is only possible with special techniques such as ion beam sputtering (IBS), with which one can achieve nanostructures
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • ion beam sputtering was obtained from Fuzhou Yingfei Xun Photoelectric Tech Co., Ltd, China; it possessed a density of 19.3 g·cm−3 and a conductivity of 4.52 × 107 S·m−1. Silver conductive adhesive, which was procured from Shenzhen Ausbond Co., LTD. (Guangdong, China), was employed to affix copper
  • structured PDMS was initially cleansed through a 5 min Ar plasma sputtering and, subsequently, coated with a 10 nm thick Ti adhesion layer. After that, ion beam sputtering was utilized to deposit a 50 nm thick Au thin film onto the outer surface of the helically shaped PDMS. Then, a controlled pre-stretch
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • unperturbed. Present stability and nature of damages on DNA origami nanostructures enable fusion of DNA origami advantages such as shape and positioning control into novel ion beam nanofabrication approaches. Keywords: DNA nanotechnology; DNA origami; FIB; heavy ions; Introduction Ion beam interaction with
  • used in tandem with ion beam therapies against cancer. Another unique application is in long-term data storage [4][5], and ion beams can be used to test the stability of such DNA-origami-based storage under irradiation from natural sources such as cosmic rays or radioisotope decay [6]. More important
  • them in procedures based on direct ion beam exposure has so far been avoided because of concerns regarding uncontrollable radiation damage to these soft matter nanostructures. The induction of strand breaks by the direct and indirect effects of ionizing radiation on DNA is a well-known fact [14][15
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • -beam bombardment, which initially introduces defects into the graphene structure and then knocks out carbon atoms, although the edges of the fabricated nanostructures remain rough after the process [11]. Other direct techniques, such as focused ion beam (FIB) milling with heavy Ga+ ions, are not
PDF
Album
Full Research Paper
Published 07 Feb 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • using three different fabrication methods: lift-off, ion beam etching (IBE), and stencil lithography. They were further analyzed using different instruments, including scanning electron microscopy, LTEM, and electron holography. A bilayer of positive PMMA resist was utilized in the first fabrication
  • submicrometer apertures were milled on SiN membranes using a focused ion beam. Furthermore, we have developed a new TEM sample preparation method, where we fabricated Py nanostructures on a bulk substrate with a SiN buffer layer and etched the substrate to create a thin SiN membrane under the Py nanostructure
  • mode to avoid melting of the PMMA resist. The second approach involved etching a thin Py film with an ion beam while preserving the intended structure with an electron-beam-patterned negative resist mask. Redeposition of etched material was found to construct fences at the edges of the structures
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • investigated the processing and properties of high-performance terpolymer fibers, much remains to be understood about the internal nano- and microstructures of these fibers, and how these morphologies relate to fiber properties. Here we use a focused ion beam notch technique and multifrequency atomic force
  • features at different length scales and verify the applicability of analytical structural models used to date. Over the last several years, a “focused ion beam (FIB) notch” technique has been developed and employed to address these gaps in understanding of the internal structures of fibers such as Kevlar
  • chamber [9]. Kevlar® K29 fibers also discussed in this report underwent the same preparation techniques. Focused ion beam notching Conductively coated fibers were cut with a FIB as discussed in detail in an earlier study [9]. In summary, 2–3 μm wide through-cuts were notched into each fiber (Figure 1b
PDF
Album
Full Research Paper
Published 05 Oct 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • , Luxembourg Thermo Fisher Scientific, Hillsboro, OR, 97124, USA 10.3762/bjnano.14.68 Abstract Ion beam processes related to focused ion beam milling, surface patterning, and secondary ion mass spectrometry require precision and control. Quality and cleanliness of the sample are also crucial factors
  • depths. Yet, low-energy ion beams come with a variety of challenges. When such low energies are used, the residual gas molecules in the instrument chamber can adsorb on the sample surface and impact the ion beam processes. In this paper we pursue an investigation on the effects of the most common
  • other articles. Despite showing slight variations in values, the trends are almost identical. Unfortunately, none of the articles studied the effect of the incidence angle. Hence, this trend could not be compared. Regarding a minimal sample modification under ion beam irradiation, higher energies
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • [27]. Direct deposition of PtNPs can be attained by the use of various physical vapor deposition techniques such as magnetron sputtering [28], sputtering [29], e-beam evaporation [30], dual ion-beam assisted deposition [31], and pulsed laser deposition (PLD) [27][32][33]. Previously, PLD has been used
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • using photolithography and reactive ion etching. The JJ sensor with variable thickness and a width of ≈100 nm is made by Ga+ focused ion beam etching. The JJ is made small in order to increase its resistance Rn to approx. 50 Ω, which is needed for a good impedance matching with the antenna. In order to
PDF
Album
Full Research Paper
Published 28 Dec 2022

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • gold-sputtered (S150B, Edwards). The metatarsi were examined using a focused ion beam scanning electron microscope (FIB-SEM) tomography (Strata 400 STEM, FEI Company, Oregon, USA) at the Central Facility for Electron Microscopy at the RWTH Aachen University. Measurements were performed using the
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • nanoprinting. For many of these applications, a precise control of ion-beam-induced processes is essential. The effect of contaminations on these processes has not been thoroughly explored but can often be substantial, especially for ultralow impact energies in the sub-keV range. In this paper we investigate
  • probe tomography (APT) [5], and ion beam analysis used for life sciences applications [6][7]), surface patterning [8], nanolithography [9], nanomachining [10][11], and nanoprinting at room [12] and cryogenic temperatures [13]. The development of nanotechnology relies on lower ion beam energies and
  • . Depending on the application, the ion beam energy is in the range of 10 to 30 keV when small spot sizes are required (i.e., spot sizes in the nanometre range) and at a few keV or even in the sub-keV range when low surface damage or minimized atomic mixing is required. One example is low-energy depth
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • B2 samples. This result again supports that employing B2 PMMA yields fewer residues and may help in avoiding post-transfer treatments for advanced PMMA residue cleaning of graphene, such as annealing and ion beam irradiation [32]. The graph of the G band shift (Supporting Information File 1, Figure
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • [47] operated in the frequency-modulation mode (resonance frequency f0 ≈ 25 kHz, spring constant k ≈ 1800 N/m, quality factor Q ≈ 14000, and oscillation amplitude A ≈ 0.5 Å). The tip mounted to the qPlus sensor consists of a 25 μm-thick PtIr wire, shortened and sharpened with a focused ion beam. A
PDF
Album
Letter
Published 03 Jan 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • , KPFM measurements were started with an imaging velocity of 1 image per minute to measure the relaxation of the introduced gradient. Electron microscopy The TEM specimens were cut from 60CSO20-FC2O pellets by focused ion beam (FIB) milling using a FEI Strata400 system with Ga ion beam. Further thinning
  • and cleaning were performed with an Ar ion beam in a Fischione Nanomill 1040 at 900 eV and 500 eV beam energy, respectively. TEM and energy-filtered TEM (EFTEM) imaging were performed with a FEI Tecnai F20 at 200 kV. High-resolution HAADF imaging and energy-dispersive X-ray (EDX) chemical mapping were
PDF
Album
Full Research Paper
Published 15 Dec 2021

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • transfer single NWs onto contact lithographic pads (Supporting Information File 1, Figure S9) to measure their conductivity. The NWs, however, turned out to be fragile and were destroyed when an attempt was made to cut them from the tungsten tip using a focused ion beam (FIB). Therefore, a method to
  • with the Ga+ focused ion beam (FIB), gas injection system (GIS), and nanomanipulator OmniProbe 400 (Oxford Instruments) with a tungsten tip. The nanomanipulator enabled a direct contact of single as-grown NWs. The current–voltage (I–V) characteristics were measured using a Keithley 237 source
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • commonly used approach is the focused ion beam (FIB) polishing. Unfortunately, artefacts that can be easily induced by Ga FIB polishing approaches are seldom published. This work aims to provide a better understanding of the underlying causes for artefact formation and to assess if the helium ion
  • here looks at the ion-beam-induced artefacts when polishing copper for EBSD measurements for different ion species (Ga, Ne) as well as polishing protocols. EBSD is a characterization technique in scanning electron microscopes (SEMs) that allows for the study of microstructure, local texture, grain size
  • elsewhere [31]. Throughout the past years, Ga-focused ion beam/scanning electron microscopes (Ga FIB/SEMs) have been used to polish samples [32][33]. Although it is recognized within the FIB community that Ga can induce artefacts in the sample [34][35][36][37], many of the encountered artefacts, which can
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021
Other Beilstein-Institut Open Science Activities