Search results

Search for "mechanical properties" in Full Text gives 340 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • , leading to facile brush coating on plastic films of polylactide (PLA). Dehydrated GO-SG-ZH coating is adhered to the PLA substrate through interfacial interactions. Furthermore, antibacterial activities, coating stability, and mechanical properties of the nanocomposite materials were investigated and
  • coating stability in environments simulating aqueous food. Mechanical properties of polylactide films with nanosilica-based and graphene-based coatings The thin coatings of SG and GO-SG-ZH considerably affected the mechanical properties of plastic films. Tensile testing results of blank PLA, SG/PLA, and
  • elemental composition of the GO-SG-ZH coating on the PLA substrate. Mechanical properties of blank PLA, SG/PLA, and GO-SG-ZH/PLA thin films. Supporting Information Figure of SEM-EDS analyses of graphene-based powder and hydrogel, figures of nanocomposite hydrogel and its dispersions in water, figures and
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Synthesis of a multicomponent cellulose-based adsorbent for tetracycline removal from aquaculture water

  • Uyen Bao Tran,
  • Ngoc Thanh Vo-Tran,
  • Khai The Truong,
  • Dat Anh Nguyen,
  • Quang Nhat Tran,
  • Huu-Quang Nguyen,
  • Jaebeom Lee and
  • Hai Son Truong-Lam

Beilstein J. Nanotechnol. 2025, 16, 728–739, doi:10.3762/bjnano.16.56

Graphical Abstract
  • monoaldehydes (e.g., formaldehyde) and other dialdehydes (C2 to C6) [37]. GA and PVA have been used as cross-linking agents in CMC-based materials to enhance selectivity, stability, and mechanical properties [38]. This method is both cost-effective and highly efficient in strengthening materials while improving
  • , in a cellulose solution, Ca2+ cross-linking with Zn‒cellulose chains enhance the mechanical properties of the resulting membranes. These ions can be incorporated into the cellulose polymer matrix with an appropriate ratio, forming a controlled hydrogen bonding network that strengthens connectivity in
  • interactions with functional acidic and basic groups, the cross-linking agent glutaraldehyde (GA), and an inorganic ion mixture (Ca2+ and Zn2+), which enhances the mechanical properties of the material by promoting the formation of a controlled hydrogen bonding network, thereby reinforcing the polymer matrix
PDF
Album
Full Research Paper
Published 27 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • significantly enhanced the flexural strength of the material, thereby improving its overall mechanical properties [6]. Additionally, another study investigated the effects of adding graphene oxide nanoplatelets (GONPs) to Portland cement. It was shown that the addition of 1 wt % GONPs improved surface
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • , produced by silkworms, beetles, mites, and spiders [14]. Silk is an FDA-approved biomaterial for medical applications [15]. SF has distinctive physical, chemical, and mechanical properties [16]. Its characteristics, including biocompatibility, biodegradability, elasticity, solubility in water, and ease of
  • (NGF) to promote bone regeneration, vascularization, and nerve integration. The scaffolds were designed with precise porosity and geometry to promote new bone growth while mimicking the structure of natural bone. The scaffold’s mechanical properties were appropriate for bone tissue application, and the
  • for tissue engineering, particularly for bone, ligaments, tendons, blood vessels, and cartilage, where mechanical properties and biological interactions are crucial. SF can be fabricated into foams, films, fibers, meshes, and hydrogels, as shown in Figure 4 [97]. Films made of fibroin and collagen
PDF
Album
Review
Published 24 Apr 2025

Water in nanoporous hexagonal boron nitride nanosheets: a first-principles study

  • Juliana A. Gonçalves,
  • Ronaldo J. C. Batista and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2025, 16, 510–519, doi:10.3762/bjnano.16.39

Graphical Abstract
  • , and high mechanical strength [20][21]. Additionally, it possesses unique properties compared to graphene, such as a wide bandgap, electrical insulation, and chemical inertness. Because of its remarkable mechanical properties and resistance to oxidation during the desalination process, h-BN can be used
PDF
Album
Full Research Paper
Published 11 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • interactions. Previous studies confirmed that PEG contains hydroxyl groups (–OH) that can form hydrogen bonds with the PCL carbonyl groups (C=O). These hydrogen bonds help stabilize the nanocomposite structure and improve its mechanical properties [33]. Optimization of PEG–PCL nanoparticle concentration The
PDF
Album
Full Research Paper
Published 20 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia 10.3762/bjnano.16.22 Abstract This review examines strategies to enhance the mechanical properties of chitosan/polyvinyl alcohol (PVA) electrospun nanofibers, recognized for their biomedical and
  • evaluate mechanical properties and provides a comparative analysis of different enhancement approaches. Applications in biomedical and industrial contexts are explored, showcasing the versatility and innovation potential of these nanofibers. Finally, current challenges are addressed, and future research
  • directions are proposed to overcome these obstacles and further enhance the mechanical properties of chitosan/PVA electrospun nanofibers, guiding their development for practical applications. Keywords: biomaterials; chitosan; electrospun nanofiber; mechanical properties; polyvinyl alcohol; Introduction In
PDF
Album
Review
Published 26 Feb 2025

Probing the potential of rare earth elements in the development of new anticancer drugs: single molecule studies

  • Josiane A. D. Batista,
  • Rayane M. de Oliveira,
  • Carlos H. M. Lima,
  • Milton L. Lana Júnior,
  • Virgílio C. dos Anjos,
  • Maria J. V. Bell and
  • Márcio S. Rocha

Beilstein J. Nanotechnol. 2025, 16, 187–194, doi:10.3762/bjnano.16.15

Graphical Abstract
  • -molecule force spectroscopy using optical tweezers (OT) on DNA complexes formed with the three rare earths at various concentrations. The mechanical properties of these complexes were then determined as a function of the element concentration. From these data, the physical chemistry of the interaction was
  • procedure has been proved to be very robust in determining changes in the mechanical properties of DNA–ligand complexes as a function of the ligand concentration in the sample. The complete details can be found in [21]. A model to determine the binding parameters from the persistence length data A quenched
  • mechanical properties of the DNA complexes formed with the ytterbium and neodymium is very similar to the one previously studied using europium [7]. In this work, we showed that europium binds outside the double helix in a cooperative way, forming clusters of about approx. three molecules and presenting an
PDF
Album
Full Research Paper
Published 14 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies

  • Fabio Le Piane,
  • Mario Vozza,
  • Matteo Baldoni and
  • Francesco Mercuri

Beilstein J. Nanotechnol. 2024, 15, 1498–1521, doi:10.3762/bjnano.15.119

Graphical Abstract
  • mathematical or computational description of the behavior of materials, capturing physical, chemical, and mechanical properties. Data-driven approaches leverage large datasets, including experimental measurements, to extract patterns, correlations, and trends in materials behavior. By combining both model
PDF
Album
Perspective
Published 27 Nov 2024

Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study

  • Kamal Kumar,
  • Nora H. de Leeuw,
  • Jost Adam and
  • Abhishek Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 1440–1452, doi:10.3762/bjnano.15.116

Graphical Abstract
  • , ψ-graphene can be used in optical detectors [39]. However, a first principles-based computational study has shown that its zero bandgap is a major challenge to its suitability in optoelectronic and electronic devices [40]. Despite being less stable than graphene, the mechanical properties of ψ
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • drug reach the brain. Recent literature highlights SLNs, NLCs, liposomes, polymeric NPs, and emulsions. While lipid-based NPs are favorable because of their lipophilicity and biocompatibility, polymeric NPs offer greater control over drug release, stability, and mechanical properties [123]. Furthermore
PDF
Album
Review
Published 12 Nov 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • modulus [61]. Understanding the mechanical properties and composition of leafcutter ant mandibles could offer valuable insights into biomimetic design principles, potentially inspiring the development of innovative tools and instruments with enhanced performance and adaptability for various applications
PDF
Album
Review
Published 05 Nov 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • multipoint measurements of nanomaterials in search of their electrical or mechanical properties. Visualisation of the halo effect under a freestanding nanostructure on a solid and 3D substrate. MEMS bridge shown (a) schematically with RoI formed (left) and RoI distance geometry (right), (b) on a SEM image as
PDF
Album
Full Research Paper
Published 23 Oct 2024

Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae)

  • Silvana Piersanti,
  • Gianandrea Salerno,
  • Wencke Krings,
  • Stanislav Gorb and
  • Manuela Rebora

Beilstein J. Nanotechnol. 2024, 15, 1260–1272, doi:10.3762/bjnano.15.102

Graphical Abstract
  • and, therefore, mechanical properties [28]. The interdigitated cuticular laminar expansions overlapping at different heights constitute a very flexible surface because of their high resilin content, which enables them to gently press against the antennal surface to be cleaned, thereby squeezing the
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • . While gelispheres enhance the physical and mechanical properties of sodium alginate, their poor solubility limits their applicability. Recently, an ionotropic gelation method has been developed to produce nanoparticles from gelispheres through interaction between oligosaccharides (e.g., cyclodextrins
PDF
Album
Full Research Paper
Published 04 Oct 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • +. Based on the quenching effect, a design for a “turn-off” fluorescent sensor for Cu2+ and Hg2+ detection with detection limits of 187.99 and 82.14 nM, respectively, was developed. Furthermore, the Au-loaded alginate-based fibers outperformed the pristine Ca-ALG fibers in terms of mechanical properties
PDF
Album
Review
Published 22 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • nanostructured carbon coatings (nanodiamonds, carbon nanotubes, and graphene-related materials) for the improvement of the overall properties of medical implants. We are focusing on biological interactions, improved corrosion resistance, and overall mechanical properties, trying to provide a complete overview
  • substances secreted and the effectiveness of CNT action. Carbon material coatings for improved mechanical, tribological, and electrical properties Performance and longevity of implants are closely related to their mechanical properties. A mismatch with tissues can potentially lead to stress shielding
  • self-repairing of the damaged surfaces by filling the cracks, thus, reducing wear loss. Chen et al. [134] improved the mechanical properties of a titanium alloy though deposition of graphene flakes. The authors investigated the system through indentation showing improvements in both toughness and yield
PDF
Album
Review
Published 16 Aug 2024

Beyond biomimicry – next generation applications of bioinspired adhesives from microfluidics to composites

  • Dan Sameoto

Beilstein J. Nanotechnol. 2024, 15, 965–976, doi:10.3762/bjnano.15.79

Graphical Abstract
  • mechanical properties of interest to fit the needs of soft robotics, microfluidic systems, or others. All of such applications necessitate that the biomimetic adhesives are robust, relatively inexpensive, and highly effective at adhering to different surfaces. Several corporations, including Setex [16
  • surface roughness and are far more cost-effective. The significant influence of mechanical properties on identical fiber designs has also been extensively studied by our group and others, including work on shape memory polymers (SMPs) for biomimetic pillars [29]. These uniformly mushroom-shaped SMP fibers
PDF
Album
Supp Info
Perspective
Published 05 Aug 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • osteoconduction, adaptability to the target area, biodegradation, and appropriate mechanical properties, which are among the main parameters that are important in the design of polymeric bone grafts. The aim of this review is to cast light on the increasing use of nanofiber-based scaffolds in bone tissue
  • , migration, and proliferation than other scaffolds, especially particulate forms [31][32]. (ii) Their large surface area per unit volume, adjustable high porosity, and superior flexibility and mechanical properties enable them to adhere to bone tissue more easily, to carry biofactors such as growth factors
  • hard bone-like tissues. Calcified bone tissue shows different mechanical properties depending on the collagen sequence in the natural structure. The polymers used in the development of polymeric nanofibers should have mechanical and biological properties suitable for calcified hard tissue structures
PDF
Album
Review
Published 25 Jul 2024

Effects of cutting tool geometry on material removal of a gradient nanograined CoCrNi medium entropy alloy

  • Yu-Sheng Lu,
  • Yu-Xuan Hung,
  • Thi-Xuyen Bui and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2024, 15, 925–940, doi:10.3762/bjnano.15.76

Graphical Abstract
  • -entropy alloys (MEAs) have attracted extensive attention and research because of their superior mechanical properties, such as higher ductility, strength, and toughness. This study uses molecular dynamics (MD) simulations to investigate the cutting behavior of a gradient nanograined (GNG) CoCrNi MEA
  • : CoCrNi; gradient nanograined materials; Hall–Petch; molecular dynamics; relative tool sharpness; removal mechanism; Introduction Compared with traditional alloys, high-entropy alloys (HEAs) with multiple elements exhibit diverse and unprecedented mechanical properties, attracting widespread scientific
  • (NiCoCr)95V5, which achieved an excellent strength and plasticity product exceeding 86 GPa·% at low temperatures [7]. Qiu et al. investigated the effects of adding Al, Ti, Mo, and W on low-temperature phase stability, mechanical properties, and deformation behavior of CoCrNi-based MEAs [8]. Strengthening
PDF
Album
Full Research Paper
Published 23 Jul 2024

The effect of age on the attachment ability of stick insects (Phasmatodea)

  • Marie Grote,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 867–883, doi:10.3762/bjnano.15.72

Graphical Abstract
  • the tips; the tips have to withstand the greatest stresses, which mostly occur in single events, rather than in normal wear [68]. Further studies could explore the role of fatigue of claw material and its effect on the mechanical properties. Pad compliance There are several possible ways in which
  • resulting actual contact area leads to lower attachment performance [72][73][74]. Most flexible cuticle consists at least partially of resilin [50][75][76], which needs water as a plasticizer to retain its extraordinary mechanical properties [70]. As the water evaporates, resilin becomes brittle and less
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • atoms in the scaffolds. Our result showed that the salts influence the mechanical properties of the polymer scaffold, both in terms of specific load capacity and relative elongation values. According to the dissolution experiments, the whole amount of strontium nitrate was dissolved from the scaffold in
  • FTIR analysis, we used an energy-dispersive X-ray spectroscopy (EDX) detector during the SEM measurements to show the presence of salts in the fibers. The EDX spectra were taken at a voltage of 15 kV. Mechanical properties A mechanical testing machine (4952, Instron, USA) and the associated software
  • (Bluehill 2, USA) were used to examine the mechanical properties of the electrospun scaffolds. The tensile testing was conducted at room temperature. The cut samples were 6 cm long and 1.5 cm wide, and a 1 mm/min pulling speed was applied in each case. The specific load capacity (Equation 1) and the
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov and
  • Edgars Butanovs

Beilstein J. Nanotechnol. 2024, 15, 704–712, doi:10.3762/bjnano.15.58

Graphical Abstract
  • the mechanical properties of Ga2O3 nanowires (NWs). In this work, we investigated the elastic modulus of individual β-Ga2O3 NWs using two distinct techniques – in-situ scanning electron microscopy resonance and three-point bending in atomic force microscopy. The structural and morphological properties
  • finely controllable β-Ga2O3 NW synthesis methods and detailed post-examination of their mechanical properties before considering their application in future nanoscale devices. Keywords: atomic force microscopy; elastic modulus; gallium oxide; mechanical properties; nanowire; scanning electron microscopy
  • suitable for use on bendable and stretchable substrates in line with the current trends in electronic technologies focusing on flexible electronic device development [11][12]. Consequently, understanding the mechanical properties of β-Ga2O3 NWs becomes an important step. For instance, precise determination
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2024
Other Beilstein-Institut Open Science Activities