Search results

Search for "melting" in Full Text gives 227 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
PDF
Album
Review
Published 04 Jul 2025

Multifunctional properties of bio-poly(butylene succinate) reinforced with multiwalled carbon nanotubes

  • Volodymyr Krasinskyi,
  • Krzysztof Bajer,
  • Ludmila Dulebova,
  • Nickolas Polychronopoulos,
  • Oksana Krasinska and
  • Daniel Kaczor

Beilstein J. Nanotechnol. 2025, 16, 1014–1024, doi:10.3762/bjnano.16.76

Graphical Abstract
  • ) allow for the determination of melting temperature (Tm), glass transition temperature (Tg), crystallization temperature (Tc), and enthalpy (ΔH) of the studied materials (Table 2). During the first heating cycle, neat PBS exhibited a cold crystallization peak at 95.1 °C and a melting peak at 115.2 °C
  • (Figure 5, black curve). In contrast, the PBS/CNT_0.5 nanocomposite showed a cold crystallization peak at 99.0 °C and a melting peak at 114.1 °C (Figure 6, black curve). During the cooling process from 300 to 0 °C, crystallization peaks were observed in the thermograms at 72.6 °C for neat PBS (Figure 5
  • peak at 97.5 °C and a melting peak at 114.6 °C (Figure 5, blue curve). In contrast, the PBS/CNT_0.5 nanocomposite sample did not show a cold crystallization peak on the second heating curve, but two melting peaks were observed at 107.8 and 114.4 °C (Figure 6, blue curve). These differences can be
PDF
Album
Full Research Paper
Published 03 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • ][12][13], as well as laser fusion or laser melting in liquid (LML) [14][15]. The latter is used to achieve the opposite effect of increasing particle size with the aim for high quality in shape or size. The presence of a liquid in laser processing, on the one hand, has practical advantages, such as
  • to melting, reshaping (Figure 1B,C), evaporation, and phase explosion near the critical point (Figure 1H) [39][46][47][48]; (ii) stress-induced decompositions, where competition between heating and expansion leads to spallation or cavitation [36][49][50] (Figure 1I); (iii) non-thermal processes
  • light fields and matter. Investigations into photoinduced melting, a well-known, yet incompletely understood phenomenon, have highlighted the role of non-thermal processes [29][76][77][78]. For example, time-resolved resonant X-ray scattering studies have directly observed the ultrafast reconfiguration
PDF
Album
Review
Published 02 Jul 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • Ge) and MnFeNiSiAl [24] (i.e., doping NiMnSi with Fe and Al) alloys, synthesized by arc melting of pure elements show a second-order magnetostructural phase transition between 170 and 220 K with an isothermal entropy change of −7.3 J·kg−1·K−1 at 2.5 T and a first-order magnetostructural phase
  • helps achieving a homogeneous alloy and is a cost-effective and time-efficient alternative to conventional target preparation methods, such as arc melting or HEBM followed by SPS, and suitable for CCA NP generation because of the inherent alloying produced during PLAL processing. The bulk CCAs were
  • (14.1%) compared to other elements. This may be attributed to higher diffusion rates due to its lower latent heat of fusion (31.8 kJ·mol−1) and its relatively low melting point (1211 K) compared to other constituents, as observed by Tiwari and colleagues [54]. Additionally, the target composition was re
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • ), and laser melting (LML) in liquids are aimed at synthesizing nanoparticles (NPs) from bulk targets (LAL), by downsizing (LFL), or by increasing/reshaping (LML) particle dispersions [1]. On the other hand, pulsed laser defect engineering in liquids (PUDEL) processes involve targeted post-treatment of
  • . The degradation of curcumin can occur either by thermal or by photochemical channels. Under the conditions examined herein, thermal degradation is unlikely to occur to a large extent as curcumin has a comparatively high melting temperature of 456–459 K [50], which is not permanently exceeded when
  • the melting temperature range, which is why the melting temperature roughly corresponds to the degradation temperature [53][54][55][56]. Another potential mechanism would be photochemical degradation. It has been reported that upon irradiation the curcumin molecule dissociates primarily at its central
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • and chemical properties, including ultrahardness (comparable to that of diamond) and high melting points around 3000 °C. These properties can be qualitatively understood by observing that the Fermi energy falls within a pronounced minimum of the density of states [7]. Some reports have shown that TaN
PDF
Album
Full Research Paper
Published 22 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • (Figure 5b) were conducted to the study physical state of APT, β-CD, poloxamer 407, and APT-loaded SLNs formulations. APT exhibits an endothermic melting peak at 255 °C, which indicates a phase transition of APT. An endothermic peak of β-CD is seen at 100 °C, which is associated with the release of water
  • from β-CD; the endothermic peak at 330 °C corresponds to the beginning decomposition of β-CD. The endothermic peak of poloxamer 407 at 48 °C corresponds to its melting, and another broad peak observed at 400 °C can be attributed to the thermal decomposition of poloxamer 407. APT-CD-NP4 showed a wide
  • peak at 100 to 300 °C, and APT-PX-NP8 showed a peak at 310 °C (Figure 5b). The melting peaks of APT disappeared in the SLNs because of the molecular encapsulation of APT in the polymeric cavity. This indicates a strong interaction between polymers and APT [21]. The DSC results are in line with XRD and
PDF
Album
Full Research Paper
Published 15 May 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • described through two primary models: the Coulomb explosion model, which relies on electrostatic repulsive forces [10][11], and the thermal spike model, where energy is transferred to lattice atoms, resulting in melting and subsequent quenching to form tracks [12][13]. The latter model has been more widely
  • evident; rather, distinct void regions are observed. Given that CdO has a melting temperature of ≈1000 °C, a portion of CdO may have melted during the annealing process at 900 °C, subsequently condensing in energetically favorable sites at the film surface. The whitish regions in the CZ900_Pris thin film
  • transfer to the electronic system occurs through electron–electron interactions, followed by transference to the lattice atomic system via electron–phonon correlation [20][21]. Along the ion trajectory, a cylindrical region is generated, characterized by temperature exceeding the melting point of the
PDF
Album
Full Research Paper
Published 17 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • remarkable thermal stability, high melting point, and chemical inertness. In the present study, Mo thin films of different thicknesses (150, 200, 250, and 300 nm) have been deposited on Si(100) substrates via radio frequency sputtering in an argon atmosphere at room temperature. Some of these films have been
  • technological applications owing to their outstanding characteristics. The high melting point and stability of molybdenum ensure that it remains structurally intact under the harsh operating conditions of solar cells [1][2]. This stability is essential for long-term reliability and performance. The low
PDF
Album
Full Research Paper
Published 01 Apr 2025

Effect of additives on the synthesis efficiency of nanoparticles by laser-induced reduction

  • Rikuto Kuroda,
  • Takahiro Nakamura,
  • Hideki Ina and
  • Shuhei Shibata

Beilstein J. Nanotechnol. 2025, 16, 464–472, doi:10.3762/bjnano.16.35

Graphical Abstract
  • target source material is a ‘solid’ or a ‘metal ion’. Methods for synthesizing particles using solid materials include laser ablation in liquid (LAL) [13][14][15], laser fragmentation in liquid (LFL) [16], and laser melting in liquid (LML) [17], and many excellent reports have been published on the
PDF
Album
Full Research Paper
Published 27 Mar 2025

Vortex lattices of layered HTSCs at different vortex–vortex interaction potentials

  • Valerii P. Lenkov,
  • Anastasia N. Maksimova,
  • Anna N. Moroz and
  • Vladimir A. Kashurnikov

Beilstein J. Nanotechnol. 2025, 16, 362–370, doi:10.3762/bjnano.16.27

Graphical Abstract
  • superconductors have been analyzed. Clustering of the vortex system is demonstrated. The melting of a vortex lattice with increasing temperature has been studied. Keywords: high-temperature superconductor; HTSC; intertype superconductors; Monte Carlo method; vortex lattice; vortex–vortex interaction potential
  • qualitatively preserved. The obtained results can be useful for designing superconducting devices of micrometer and submicrometer size. For the potential from Equation 2, vortex lattice melting with increasing temperature was studied. For the potential from Equation 3, the formation of a vortex lattice was
  • potential observed in ferromagnetic superconductors. Clustering of vortices was observed in magnetic fields from 400 to 1000 G. For a vortex system interacting with a potential characteristic of intertype superconductors, melting inside vortex clusters was observed with increasing temperature. At
PDF
Album
Full Research Paper
Published 13 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • nanosecond pulses, graphite has an effective absorption coefficient of 5 µm−1 [26], resulting in an ablation threshold fluence of 0.7 J·cm−2 [27]; thus, our chosen fluence was well below this ablation threshold. The critical melting fluence of graphite has been reported to be 0.13 J·cm−2 [28], suggesting
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • physical properties (structure, morphology, optical and electrical properties, and luminescence) of RF-sputtered ZnTe films. Quartz is an import substrate because of its high transparency, high melting point, and low thermal expansion coefficient. This study helps in optimizing the substrate temperature to
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • 1× PBS to remove any GO–Chl nanoconjugate not uptaken by the cells. Cells were then harvested using trypsin–EDTA and resuspended in 100 μL of 1× PBS, followed by mixing with 1% low-melting-point agarose (LMPA, prepared in 1× PBS) to achieve a final concentration of 0.5%. Thereafter, 80 μL of the
  • suspension was layered onto base slides (pre coated with 1% normal-melting agarose; NMA), evenly spread with a coverslip, and kept on ice to allow gelation. The coverslip was carefully removed followed by the addition of a third layer of 90 μL of 0.5% LMPA, carefully spreading with a coverslip and kept on
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • optical properties [1][2][3][4]. Hf and its alloys are used in nuclear reactors because of their large neutron absorption cross sections and high melting points [5]. They are also used in submarines because of their corrosion resistance [6][7]. The high refractoriness of some Hf compounds [2][4] allows
  • [8] compared to bulk Hf. HfO2 is a wide-bandgap (5.68 eV) material with a high dielectric constant (≈25) [9][10]. HfC has a very high melting point (≈3900 °C) and ranks among the hardest materials, with a Vickers hardness value exceeding 20 GPa [4][11]. The properties vary substantially depending on
  • mbar) using an electron beam melting furnace having a beam power of 60 kW (ELIT 60) at an accelerating voltage of 24 kV in a water-cooled crucible with feeding mechanism and an extraction system [32]. All operations were conducted at the Centre for Materials for Electronics Technology (CMET), Hyderabad
PDF
Album
Full Research Paper
Published 18 Dec 2024

Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model

  • Aram Shirinyan and
  • Yuriy Bilogorodskyy

Beilstein J. Nanotechnol. 2024, 15, 1453–1472, doi:10.3762/bjnano.15.117

Graphical Abstract
  • . Disorder can arise from the recombination of these defects [1][2][3][4][5][6][7][8][9]. In metals, for instance, the equilibrium concentration of thermal vacancies, even at high pre-melting temperatures, reaches values of only about 0.1% [10][11]. Therefore, in the following, we will focus on radiation
  • -induced vacancies, assuming that the concentration of radiation-induced point defects at characteristic temperatures (far from melting) exceeds the concentration of thermal-equilibrium defects. The behavior of HDCMs under irradiation highly depends on their size. For example, when TiN nanograins are
  • transformations from bcc to fcc and from fcc to bcc that occur in an iron-like nanomaterial. We detail the findings for pure iron at the end of the paper. The enthalpy change for vacancy formation can be estimated from the equilibrium melting temperature, Tm, and is ΔHfα = 3.76·10−19 J for the α phase and ΔHfβ
PDF
Album
Full Research Paper
Published 21 Nov 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • of 50 to 100 nm. Whilst this temperature does not cause any damage to this sample, elevated temperatures beyond the impact point can potentially cause heat damage, especially when working with materials with a lower thermal conductivity or a lower melting point than collagen. Future experiments
PDF
Album
Full Research Paper
Published 27 Sep 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • size and composition, making it a preferred choice for nanomaterials synthesis [2][3][4][5]. The process involves laser plasma interacting with a metal in a liquid; it excites electrons, which then generates atomic vibrations within a few picoseconds, causing rapid heating, melting, and explosive
  • ) laser melting in liquid (LML), and (iii) laser defect engineering in liquid (LDL) [16]. In our previous work, we fabricated Ag–Cu alloy NPs using the femtosecond (fs) laser irradiation approach [17]. Similarly, Ag/Au alloy NPs were fabricated by laser ablation of single metal targets in water followed
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media

  • Evangelos Voyiatzis,
  • Eugenia Valsami-Jones and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 995–1009, doi:10.3762/bjnano.15.81

Graphical Abstract
  • can be traced back to the seminal works of Lindemann [29] and Pawlow [30]. Recent developments and the current state of the art have been summarized in the reviews of Mei and Lu [31] and Alcoutlabi and McKenna [32]. Emphasis has been placed on relating the melting temperature of a NP to its size by
  • adapting theories suitable for bulk materials to NPs; examples include the classical nucleation theory [33], phenomenological models [34][35][36], as well as molecular simulations [37][38][39][40]. A molecular dynamics (MD) study of shape transformation and melting of tetrahexahedral Pt NPs has been
  • carried out by Wen et al. [41]. Wang et al. employed ab initio MD to describe the melting of icosahedral Au nanoclusters [42]. The structural and thermal stability of high-index-faceted Pt NPs was addressed by Zeng et al. [43]. Similarly, the thermal stability of unsupported Au NPs was investigated by
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Synthesis of silver–palladium Janus nanoparticles using co-sputtering of independent sources: experimental and theorical study

  • Maria J. Martínez-Carreón,
  • Francisco Solís-Pomar,
  • Abel Fundora,
  • Claudio D. Gutiérrez-Lazos,
  • Sergio Mejía-Rosales,
  • Hector N. Fernández-Escamilla,
  • Jonathan Guerrero-Sánchez,
  • Manuel F. Meléndrez and
  • Eduardo Pérez-Tijerina

Beilstein J. Nanotechnol. 2024, 15, 808–816, doi:10.3762/bjnano.15.67

Graphical Abstract
  • melting temperature and, partly, because the appearance of moisture delays the diffusion of silver atoms. The synthesis of AgPd nanocrystals with sizes ranging from 2.46 to 6.65 nm has been reported for applications in the manufacturing of electronic components [6]. Chu et al. [7] synthesized Pd–Ag
PDF
Album
Full Research Paper
Published 04 Jul 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • review also includes findings that are specific to the LSPC method variants laser ablation (LAL), fragmentation (LFL), melting (LML), and reduction (LRL) in organic liquids. A particular focus will be set on permanent gases, liquid hydrocarbons, and solid, carbonaceous species generated, including the
  • reduction in liquid (LRL), laser fragmentation in liquid (LFL), and laser melting in liquid (LML), which are schematically shown in Figure 1. Molecular precursors are only required in LRL, whereas the other variants employ a solid as starting material, which is ablated/fragmented/molten in the dispersing
  • laser ablation, fragmentation, or melting in liquids (RLAL, RLFL, or RLML), which refers to the synthesis of nanoparticles wherein molecular or galvanic replacement precursors, such as metal salts, are added to react in situ [7]. The added precursors take part in chemical reactions leading to the
PDF
Album
Review
Published 05 Jun 2024

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • Abstract Metallic nanowires (NWs) are sensitive to heat treatment and can split into shorter fragments within minutes at temperatures far below the melting point. This process can hinder the functioning of NW-based devices that are subject to relatively mild temperatures. Commonly, heat-induced
  • , after depositing NWs onto a substrate, heat treatment at temperatures around a few hundred degrees Celsius is often employed to eliminate the surfactant used during synthesis [18][19]. The melting temperature of silver is 962 °C, which is significantly higher than the temperatures required to remove
  • organics. However, when the size of the structures is reduced to the nanoscale, metals exhibit distinct behavior at elevated temperatures compared to their larger counterparts [20][21]. Generally, a reduction in the melting point occurs as the size and dimensionality of the nanostructures decrease [20][22
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • mode to avoid melting of the PMMA resist. The second approach involved etching a thin Py film with an ion beam while preserving the intended structure with an electron-beam-patterned negative resist mask. Redeposition of etched material was found to construct fences at the edges of the structures
  • establish a good thermal contact during metal deposition to prevent the resist mask from melting as the substrate temperature is above the glass transition temperature of the resist. Ion beam etching The IBE process (Figure 6) is as follows: The first step is to deposit Py on the substrate; then a negative
  • associated with resist such as the edge bead problem and resist melting during deposition. This approach is ideal for applications on small substrates where spin coating of a homogeneous resist layer is difficult. This technique is particularly suitable for TEM application because TEM grids have the SiN
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

A multi-resistance wide-range calibration sample for conductive probe atomic force microscopy measurements

  • François Piquemal,
  • Khaled Kaja,
  • Pascal Chrétien,
  • José Morán-Meza,
  • Frédéric Houzé,
  • Christian Ulysse and
  • Abdelmounaim Harouri

Beilstein J. Nanotechnol. 2023, 14, 1141–1148, doi:10.3762/bjnano.14.94

Graphical Abstract
  • droplets (F42240, lead-free solder paste – class 5, CIF, France). The fused silica substrate was placed on a heating plate set to 270 °C, which required around 3 min to reach the melting temperature of the solder droplets (217 °C), as observed under an optical microscope. Upon cooling, 16 SMD resistors
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • (melting point temperature Tm) of 1-HA-OCn and 2-HA-OCn was revealed. The Tm values measured by differential scanning calorimetry (DSC) increased upon increase of the alkyl chain length exhibiting a zigzag fashion (Figure 11g) [129]. Such periodic changes in the 2D structure as well as Tm were also
  • phase transition temperature (melting point) for 1-HA-OCn (blue) and 2-HA-OCn (red) as a function of the number of carbon atoms in the alkyl chains. (a–c) Wheat-like structure formed by different orientations of anthraquinone pairs; (d–f) knot-like structure in which the clusters of the anthraquinone
PDF
Album
Review
Published 23 Aug 2023
Other Beilstein-Institut Open Science Activities