Search results

Search for "membrane" in Full Text gives 506 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Characterization of ion track-etched conical nanopores in thermal and PECVD SiO2 using small angle X-ray scattering

  • Shankar Dutt,
  • Rudradeep Chakraborty,
  • Christian Notthoff,
  • Pablo Mota-Santiago,
  • Christina Trautmann and
  • Patrick Kluth

Beilstein J. Nanotechnol. 2025, 16, 899–909, doi:10.3762/bjnano.16.68

Graphical Abstract
  • nanopores in different materials, which is essential for optimizing membrane performance in applications that require precise pore geometry. Keywords: etched ion tracks; SiO2; small angle X-ray scattering (SAXS); swift heavy ion irradiation; track-etched nanopores; Introduction Solid-state nanopores have
  • ion track-etched nanopores is crucial to optimize their fabrication for specific applications. Here we focus on characterizing size, geometry, and size distribution of track-etched nanopores in thermal and PECVD SiO2 as these parameters are critical for membrane performance in specific applications
  • analyzing and fitting one-dimensional (1D) sections of the SAXS patterns employing different form factors rather than performing 2D image fitting. We implemented our new fitting method to investigate conical nanopores in the two different SiO2 membrane materials. For nanopores in thermal SiO2 we confirm
PDF
Album
Full Research Paper
Published 12 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • soft X-ray range. Reaction cells with an ultrathin membrane that confines the gas in a narrow region extremely close to the sample surface were applied to the study of Cu- and Fe-doped cerium oxide films during thermal treatments in hydrogen at ambient pressure [58]. The combination of ambient pressure
PDF
Album
Review
Published 10 Jun 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • play an essential role in the structure and function of biomolecules (deoxyribonucleic acid, protein, and phospholipid membrane). Hydration layers are also important to the structure and property of artificial graphene-based materials. Our recent works prove that graphene-based hydrogels are
  • Zn(OH)2 constituent). ZH nanoparticles and GO nanosheets in the GO-SG-ZH hydrogel are antibacterial and antibiofilm agents with low toxicity for food packaging and biomedical applications [56][57]. The main antibacterial mechanism of GO nanosheets is cell membrane damage caused by direct contact of
  • nanoparticles. Regarding the antibacterial mechanism of the nanocomposite coating, direct contact of bacterial cells with sharp nanostructures of the coating is the cause of membrane damage and cell inactivation. Zn2+ cations released from ZH nanoparticles and reactive oxygen species generated by ZH
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Synthesis of a multicomponent cellulose-based adsorbent for tetracycline removal from aquaculture water

  • Uyen Bao Tran,
  • Ngoc Thanh Vo-Tran,
  • Khai The Truong,
  • Dat Anh Nguyen,
  • Quang Nhat Tran,
  • Huu-Quang Nguyen,
  • Jaebeom Lee and
  • Hai Son Truong-Lam

Beilstein J. Nanotechnol. 2025, 16, 728–739, doi:10.3762/bjnano.16.56

Graphical Abstract
  • , low adsorption efficiency, water matrices, and secondary pollutant formation, limiting their overall efficiency. A promising method for tackling tetracycline antibiotics involves membrane technologies such as osmosis membrane technology [6][7]. However, this approach presents significant upfront
  • investment and recurring maintenance costs, while the contents of organic material and dissolved salts significantly affect the function of the membranes. Furthermore, challenges related to the draw solution and the necessity for integrating additional membrane processes for its regeneration remain key
PDF
Album
Full Research Paper
Published 27 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • through a 0.22 μm PVDF membrane until a clear solution was obtained. The absorbance of the filtrate was immediately measured using a UV–vis spectrophotometer at 275 nm (A275). Free tannic acid concentrations C (in µg·mL−1) were determined using the equation A275 = 0.4131C − 0.0004 (r2 = 0.9972) derived
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • membrane comes in contact with the aqueous medium, it absorbs water and swells. Water penetrates the APT-loaded SLN formulations fast and passes through toward the drug core such that the drug dissolves. Diffusion is enhanced because of the equilibrium between elastic polymer strength and hydration by
  • increasing the swelling of the polymer [22]. In the dissolution medium, pores are formed in the polymeric membrane that determine the release of the drug through osmotic pressure difference [16]. Statistical analysis The drug release from the formulated SLNs was analyzed statistically using ANOVA, followed
  • solutions were collected through micropipette and filtered by using membrane filter (0.45 µm). The APT concentration was determined in the supernatant using a UV–vis spectrophotometer (UV 1800 Shimadzu, Japan) measuring the absorbance at λmax of 210 nm [13]. Drug content and encapsulation efficiency Drug
PDF
Album
Full Research Paper
Published 15 May 2025

A formulation containing Cymbopogon flexuosus essential oil: improvement of biochemical parameters and oxidative stress in diabetic rats

  • Ailton Santos Sena-Júnior,
  • Cleverton Nascimento Santana Andrade,
  • Pedro Henrique Macedo Moura,
  • Jocsã Hémany Cândido dos Santos,
  • Cauãn Torres Trancoso,
  • Eloia Emanuelly Dias Silva,
  • Deise Maria Rego Rodrigues Silva,
  • Ênio Pereira Telles,
  • Luiz André Santos Silva,
  • Isabella Lima Dantas Teles,
  • Sara Fernanda Mota de Almeida,
  • Daniel Alves de Souza,
  • Jileno Ferreira Santos,
  • Felipe José Aidar Martins,
  • Ana Mara de Oliveira e Silva,
  • Sandra Lauton-Santos,
  • Guilherme Rodolfo Souza de Araujo,
  • Cristiane Bani Correa,
  • Rogéria De Souza Nunes,
  • Lysandro Pinto Borges and
  • Ana Amélia Moreira Lira

Beilstein J. Nanotechnol. 2025, 16, 617–636, doi:10.3762/bjnano.16.48

Graphical Abstract
  • pathological conditions. In addition, cell edema (B) was found, characterized by swelling of the hepatocytes due to excessive accumulation of intracellular fluid. This alteration may be associated with dysfunctions in the permeability of the plasma membrane, leading to an osmotic imbalance, which favors fluid
PDF
Album
Supp Info
Full Research Paper
Published 07 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • . The properties of nanofibers such as their high specific surface area, large surface-to-volume ratio, large length-to-diameter ratio, porous membrane structure, and their ability to mimic the extra-cellular matrix (ECM) of natural tissues make them a suitable material for wound dressing and skin
  • ]. Electrospun nanofibrous membrane as a dermal substitute Millions of individuals worldwide are affected by a leading source of morbidity, which is chronic non-healing wounds with extensive injury areas [46]. For the management of such wounds, bioresorbable skin substitutes with optimum biomechanical
  • characteristics [165]. A dense membrane made of PU and an ethanolic extract of propolis (EEP) was electrospun with a polycaprolactone/gelatin (PCL/Gel) scaffold. The PCL/Gel scaffold was employed as the sublayer to promote cell adhesion and proliferation, while the PU/EEP membrane was utilized as the top layer to
PDF
Album
Review
Published 24 Apr 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • Laboratory (HiREF), Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia Advanced Membrane Technology Research Center, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia 81310 Johor Bahru, Malaysia Department of Physics
PDF
Album
Full Research Paper
Published 23 Apr 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • arises from the increased presence of β-sheet structures in AβOs, which can create distinct rafts in the membrane. These ring-shaped oligomers adhere to the cell membrane and inflict damage either by directly penetrating the membrane or by aggregating into fibrils that disrupt cellular integrity. Once
PDF
Album
Review
Published 22 Apr 2025

Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus

  • Carlos Enrique Torres-Méndez,
  • Sharmilee Nandi,
  • Klara Martinovic,
  • Patrizia Kühne,
  • Yifan Liu,
  • Sam Taylor,
  • Maria Lysandrou,
  • Maria Ines Berrojo Romeyro Mascarenhas,
  • Viktoria Langwallner,
  • Javier Enrique Sebastián Alonso,
  • Ivana Jovanovic,
  • Maike Lüftner,
  • Georgia-Vasiliki Gkountana,
  • David Bern,
  • Abdul-Raouf Atif,
  • Ehsan Manouchehri Doulabi,
  • Gemma Mestres and
  • Masood Kamali-Moghaddam

Beilstein J. Nanotechnol. 2025, 16, 540–550, doi:10.3762/bjnano.16.42

Graphical Abstract
  • only the H1, H2, H3, N1 and N2 strains have been associated with widespread human epidemics [3]. H1 protein initiates infection by binding to the cell surface and inducing membrane fusion. This protein is considered as a prime determinant of the pathogenicity and is the most abundant influenza surface
  • Flour 568 were obtained from ThermoFisher (USA). Artificial saliva was obtained from LCTech GmbH (Germany). Syringeless filters of regenerated cellulose membrane (0.45 μm) were purchased from Cytiva (Sweden). Chloroauric acid (HAuCl4), hydrochloric acid, sulfuric acid, 4-aminothiophenol (4-ATP), ethanol
  • hemagglutinin was used as negative control. After filtrating the solutions through a 0.45 μm membrane filter to remove any suspended particles, 50 μL were deposited on the functionalized electrode and incubated at RT for 25 min. The electrode was then rinsed with 1 mL of PBS and dried under a flow of N2 gas
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • accelerating voltage of 200 kV. For this purpose, the FEB deposits were prepared on an ultrathin carbon support layer of less than 3 nm thickness supported by a lacey carbon membrane (PELCO) on a TEM grid. The TEM grid was fixed to the heatable stage. The deposition process was carried out in a Philips XL30
  • prepared on an ultrathin carbon support film spanning a lacey carbon membrane (Figure 2c). The deposit appears smeared because of drift caused by charging effects during the deposition process. High-resolution STEM imaging (Figure 2d,e) revealed a granular nanostructure with nanograins of around 2 nm in
  • profiles along vertical and horizontal directions. (c) STEM image of the FEB deposit on a carbon membrane. (d) High-resolution STEM image from the center of the deposit. (e) High-resolution STEM image from the edge of the deposit. (f) SAED pattern from the edge of the deposit. Enlarged version of the
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

Water in nanoporous hexagonal boron nitride nanosheets: a first-principles study

  • Juliana A. Gonçalves,
  • Ronaldo J. C. Batista and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2025, 16, 510–519, doi:10.3762/bjnano.16.39

Graphical Abstract
  • that rhombic pores have a high affinity for water absorption, much higher than that of triangular pores. This suggests that the type of pore can significantly alter the hydrophobicity of h-BN and influence water flow through the membrane. Additionally, we observed that water molecules tend to form
  • recent decades, technological advances such as membrane technology and energy recovery equipment have led to a considerable reduction in the energy required to desalinate seawater [2][3]. The proposal to use membranes that exhibit superior selectivity and high water flux has been a major focus for
  • desalination technology [4][5][6]. Computational methods have been employed to enhance the understanding of nanoscale desalination processes. In this context, the use of molecular dynamics and ab initio calculations allows for the study of the physics involved in nanostructured membrane materials designed to
PDF
Album
Full Research Paper
Published 11 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • size can cause cellular damage or prevent membrane permeation for drug delivery [10]. Therefore, a fine and reproducible size control during NP synthesis is essential. Pulsed laser ablation in liquids (PLAL) allows for the synthesis of colloidal NPs offering numerous advantages, such as being
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • ZEISS ZEN software. A significant increase of the ratio between the intensities of FITC and DAPI was observed from 1 to 4 h. This suggests that the nanoparticles can be internalized without damaging the cultured cells within 4 h. They can cross the cell membrane and accumulate in the cytoplasmic region
  • secretion from AGS cells was studied after two days of culturing on 24-well plates, and purple-red-stained cells were considered as mucin-positive cells [73] (Supporting Information File 3). AGS cells are known to express both secreted mucins (such as MUC5AC) and membrane-bound mucin (MUC1) [74][75]. The
  • obtained fluorescence represents the increased amount of nanoparticles interacting with the cell membrane and might be associated with the increased mucin amount along with the cells. This indicates that the nanoparticles can be adsorbed onto the cells under in vitro conditions. Conclusion Gastric
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • generated by water oxidation at the anode (2H2O ⇌ O2 + 4H+ + 4e−) [12]. To enable equilibration of bicarbonate anions between the two compartments during electrolysis, we used an anion exchange membrane to separate the cathode from the anode compartment. Although anion exchange membranes are designed to
  • primarily allow the passage of anions, proton transport or leakage, can occur because of the inherent structure and presence of water within the membrane [72][73][74]. This way, anodically generated protons can cross over into the cathode compartment and produce CO2 from bicarbonate. At a constant current
  • control experiment was performed at open circuit potential. The two compartments of the H-cell with 9 mL electrolyte each were separated by a Selemion anion exchange membrane (AMV-N). Pulsed laser-grafted gold nanoparticle–hydrophilic carbon fiber paper composite served as working electrode. The counter
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • -damage response. GO–Chl causes loss of plasma membrane integrity, cell cycle arrest, and significant genotoxicity in A549 cells. Further, elevated expression of key autophagy proteins beclin-1, ATG-7, LC-3-I/II, and SQSTM1/p62 reveal that inhibition of autophagy plays a crucial role in regulating DDR
  • , including WNT, Notch, STAT 1/3, and NRF-2, respectively [20]. Graphene oxide nanosheets have been shown to selectively disrupt the cell membrane and cytoskeleton of cancer cells through activation of FAK-Rho-ROCK pathway and suppressed expression of integrin [21]. It has also been found that nuclear
  • of cells with compromised membrane and used for quantitative estimation of plasma membrane integrity using flow cytometry [31]. Briefly, A549 cells (1 × 105 cells/mL/well) were seeded onto 12-well culture plates and exposed to varying concentrations (1–100 μg/mL) of GO–Chl for 24 h. Cells were washed
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • minimum inhibitory concentration and minimum bactericidal concentration values of 78.1 and 312.5 µg/mL, respectively. BerNPs caused significant damage to S. mutans cells, disrupting the cell membrane structure, and leading to cell lysis and death. Additionally, BerNPs effectively inhibited the biofilm
  • wrinkles (Figure 4A). However, after exposure to BerNPs, significant alterations in bacterial cell morphology were observed (Figure 4B). The cell membrane was severely compromised, exhibiting wrinkled and disrupted borders, leading to membrane rupture. This damage caused the release of intracellular
  • , ultimately triggering cell death [32]. The findings of Peng et al. on Streptococcus agalactiae indicated that berberine significantly disrupted the cell membrane structure. SDS-PAGE electrophoresis results showed that some protein bands were blurred or absent, suggesting that berberine led to complete or
PDF
Album
Full Research Paper
Published 27 Feb 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • membrane can be tricky in terms of handling and thickness measurements used for stress calculations [132]. Preparation of specimens requires attention to prevent damage, pretension, or slipping from grips during testing. Maccaferri et al. [133] demonstrated the use of a paper frame to hold the specimen in
  • because of the less favorable mechanical properties of chitosan compared to PVA. For the chitosan/PVA membrane, the stiffer nature of chitosan tends to reduce flexibility, while toughness tends to decrease because of the brittleness of chitosan. In support of these observations, the effects of different
  • compared to pure PVA nanofibers, said to be due to hydrogen bond formation between chitosan and PVA. Olvera Bernal et al. [58] studied different concentrations of chitosan between 2.5% and 4% (w/w) in the chitosan/PVA membrane, while keeping the PVA concentration constant at 5% (w/w). The Young’s modulus
PDF
Album
Review
Published 26 Feb 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • activated sludge process and biological membrane technologies, are commonly applied in wastewater treatment [21]. However, these technologies have come under scrutiny because of certain limitations, such as extended processing times and the generation of heat [22]. Conversely, chemical methods such as
  • oxidation or membrane filtration may be effective, they are energy-intensive and expensive to implement on a large scale [28]. Limited public awareness Many people may be unaware of how improper antibiotic disposal harms the environment or of the importance of antibiotic removal, which leads to poor
PDF
Album
Review
Published 25 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • aim to prepare nanocarriers with the potential to prolong the drug circulation time, cross the blood–brain–tumor barrier (BBTB), and provide targeted and controlled drug release in the brain tumor cells. Cytotoxicity and effects on cell membrane integrity of the blank and TMZ-loaded dual
  • for active agent loading and functionalization with (intra)cellular component targeting ligands, and extremely small size for crossing the blood–brain barrier (BBB) and targeted delivery to the brain. The hydrophobic nature of the CNs offers good membrane permeability. Through chemical modifications
  • apoptosis via activation of reactive oxygen species (ROS)-, caspase-, and mitochondrion-dependent pathways, such as p53-mPTP [13][17][18], and reduce the expression of voltage-dependent ion channel genes and extracellular receptors in glioma cells, damaging the cell membrane and changing its potential [19
PDF
Album
Full Research Paper
Published 19 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • (primarily intravitreal, subretinal, and suprachoroidal injections) is a common strategy for alleviating retinal disorders; however, the ocular tissue barriers (primarily the vitreous, inner limiting membrane, retinal pigment epithelium, and blood–retina barriers) and defense mechanisms impede drug
  • achieve customized treatment and reduce the required number of injections [106]. The inner limiting membrane (ILM) is a major obstacle preventing effective drug delivery to the retina after intravitreal injection [166]. Considering that the ILM is not necessary for adults, using photothermal nanomaterials
PDF
Album
Review
Published 17 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • the gas separation potential of MOF-based MMMs in CO2 capture applications are highlighted. Keywords: CO2 capture; gas separation; inorganic filler; metal-organic framework (MOF); mixed matrix membrane (MMM); Review 1 Introduction The continuous rise in global CO2 emissions has unfolded an era of
  • , including regenerative solvent-based absorption [2][6], fixed-bed adsorption [7], cryogenic separation techniques [8], and membrane separation methods [9][10][11][12]. Of these, membrane technology offers advantages such as exceptional stability, high efficiency, low energy consumption, and ease of
  • operation [5]. However, a significant drawback of membrane separation is the inherent trade-off between permeability (pressure-normalized flux) and selectivity (αA/B) for gases A and B, as described by the relationship in Equation 1 [5][12][13][14]. where PA is the steady-state permeability of the more
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Clays enhanced with niobium: potential in wastewater treatment and reuse as pigment with antibacterial activity

  • Silvia Jaerger,
  • Patricia Appelt,
  • Mario Antônio Alves da Cunha,
  • Fabián Ccahuana Ayma,
  • Ricardo Schneider,
  • Carla Bittencourt and
  • Fauze Jacó Anaissi

Beilstein J. Nanotechnol. 2025, 16, 141–154, doi:10.3762/bjnano.16.13

Graphical Abstract
  • inhibiting Gram-negative bacteria, which typically exhibit increased resistance due to the presence of an outer membrane that protects them from certain antimicrobial agents [29]. Therefore, the preliminary results indicate that bentonite clay modification with niobium oxide (BEOx) and niobium phosphate
PDF
Album
Supp Info
Full Research Paper
Published 10 Feb 2025
Other Beilstein-Institut Open Science Activities