Search results

Search for "milling" in Full Text gives 131 result(s) in Beilstein Journal of Nanotechnology.

Focused ion beam-induced platinum deposition with a low-temperature cesium ion source

  • Thomas Henning Loeber,
  • Bert Laegel,
  • Meltem Sezen,
  • Feray Bakan Misirlioglu,
  • Edgar J. D. Vredenbregt and
  • Yang Li

Beilstein J. Nanotechnol. 2025, 16, 910–920, doi:10.3762/bjnano.16.69

Graphical Abstract
  • and Application Center (SUNUM), 34956, Istanbul, Turkey Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands 10.3762/bjnano.16.69 Abstract In addition to precise milling, the deposition of material at a specific location on a sample
  • ); Introduction The deposition of material at a certain spot on a sample surface is a powerful and useful feature of focused ion beam (FIB) systems. At first, the deposition was used for circuit editing and as a protection layer before milling. Nowadays, the process is more far-reaching, and three-dimensional
  • are more advanced with respect to source development because of their relatively low requirements regarding the cooling laser. Milling [10] as well as induced deposition of platinum (Pt) [11] and tungsten (W) [12] have been studied for a prototype FIB with an ultracold Rb+source. Further, a Cs+ laser
PDF
Album
Full Research Paper
Published 16 Jun 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • are prepared by ball milling and spark plasma sintering or powder pressing and sintering. Nanoparticles (NPs) from the bulk materials are synthesized by pulsed laser ablation in liquid. Magnetization measurements confirm a ferromagnetic-to-paramagnetic phase transition in bulk alloys, with Tc = 179 K
  • [50]. In the current work, we aim to develop NPs of bulk rare-earth-free MnTX-based CCAs via PLAL. We start with bulk Ge-based CCA synthesized by high energy ball milling (HEBM) followed by spark plasma sintering (SPS), and an Al-based CCA obtained by powder pressing and sintering. Our goal is not
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
  • films. The conventional methods reported for the synthesis of pyrite NPs include chemical methods using stabilizing agents [4], high-energy mechanical ball milling [6][7], colloidal pyrite by wet solution/phased chemical approaches [8][9], and hot injection [10][11]. In this study, PLAL was employed to
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • products was significantly lower compared to established methods like cryo-milling and comparable to the quantities found in LFL of drugs [43]. To realize an industrially relevant scale-up, recent curcumin LFL experiments [80] carried out in a specialized flat jet flow-through reactor showed better control
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • illumination. Our results indicate that the inclusion of BCF has a passivating effect on iodide defects within the devices. Particularly, a major improvement on the diode character of the HTL/perovskite interface was observed, in both spiro-OMeTAD and PTAA cells. The details of device fabrication, ion milling
  • , which diminish the HTL/perovskite junction quality [40][41]. To investigate the microscopic origins of these effects at the interfaces, we performed cross-sectional KPFM. A well-performing solar cell was selected from each batch and after cleaving, it was subjected to argon ion milling in order to get a
  • smooth cross-section. This is useful for getting stable KPFM images, without electrostatic cross-talk. At every step of this procedure, the current–voltage characteristics were being monitored, as shown in Figure 2. By carefully selecting the parameters of the ion milling, we can ensure that the exposed
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • nanospectroscopy experiments. The microcapacitors were produced by focused ion beam (FIB) milling on a silicon wafer with a 300 nm layer of SiO2 and a 14 nm sputtered layer of Pt on it (Figure 2). Results and Discussion To investigate whether the C″-sensitive detection leads to an improved spatial resolution of
  • in Figure 8. The electrical connection from the LIA to the cantilever with the two excitation voltages was realized by using a direct cable connection. Focused ion beam milling FIB milling of the cantilever was conducted using a LEO Gemini instrument from Zeiss. It was used with an acceleration
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

Focused ion and electron beams for synthesis and characterization of nanomaterials

  • Aleksandra Szkudlarek

Beilstein J. Nanotechnol. 2025, 16, 613–616, doi:10.3762/bjnano.16.47

Graphical Abstract
  • Aleksandra Szkudlarek Academic Centre for Materials and Nanotechnology, AGH University of Krakow, av. Mickiewicza 30, 30-059, Krakow, Poland 10.3762/bjnano.16.47 Keywords: deposition; etching; focused electron beams; focused ion beams; lithography; milling; nanofabrication; 3D nanostructures; It
  • tailored 3D architectures [4]. Focused beams not only allow the characterization of atomic structures but also enable precise local modification of material properties through ion milling and the creation of novel structures with tunable mechanical, electrical, and magnetic properties using gas-assisted
  • ion beam interactions [15]. In addition, the extension of the continuum model has proven useful in predicting the outcomes of ion beam milling processes in multilayered systems, as demonstrated in the case of the Si/SiO2/Pt system [16]. To identify the current state of the technology and routes
PDF
Album
Editorial
Published 02 May 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • reduce the thickness to less than 40 μm at the center, ion milling was performed. This ultrathin central region was used for detailed TEM analysis. Description of the Ion Source Figure 1 illustrates the block diagram of the magnetron-coupled ultralow-energy ECR ion source (Plasma Gen-II, Tectra GmbH
PDF
Album
Full Research Paper
Published 31 Mar 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • prepared using a wet-milling method with zirconium balls to enhance bioavailability and expand potential applications. The particle size and physicochemical properties of the BerNPs were analyzed using field-emission scanning electron microscopy (FE-SEM), UV–vis spectroscopy, X-ray diffraction, and Fourier
  • products containing BerNPs, which can be used in the care and treatment of dental caries and other dental problems. Results and Discussion Production of BerNPs In this study, the raw berberine powder exhibited a crystalline structure with particle sizes ranging from 15 to 35 µm (Figure 1A). Ball milling is
  • an efficient technique for fabricating nanoparticles from crystalline structures of organic pharmaceutical raw materials [18]. Other studies have shown that incorporating surfactants into the wet ball milling process significantly enhances particle size reduction, facilitates the effective production
PDF
Album
Full Research Paper
Published 27 Feb 2025

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • desired morphology is essential for a given application. Generally, practical techniques for obtaining nanomaterials are sol–gel method, chemical and physical vapour deposition, hydrothermal method, ball milling, grinding, lithography, etching, and laser ablation [14][15][16][17][18]. The morphology
PDF
Album
Full Research Paper
Published 18 Dec 2024

Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti

  • Matheus Alves Siqueira de Assunção,
  • Douglas Dourado,
  • Daiane Rodrigues dos Santos,
  • Gabriel Bezerra Faierstein,
  • Mara Elga Medeiros Braga,
  • Severino Alves Junior,
  • Rosângela Maria Rodrigues Barbosa,
  • Herminio José Cipriano de Sousa and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 1566–1575, doi:10.3762/bjnano.15.123

Graphical Abstract
  • electrical, optical, and magnetic properties for a wide range of applications [22][23]. They can be synthesized by different procedures based on “top-down” or “bottom-up” approaches [24] (Figure 1). Top-down synthesized silver nanoparticles can be obtained by lithography, attrition, milling, and other
PDF
Album
Review
Published 04 Dec 2024

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • largely avoided by using noble gas ions like He+ [32][35] or Ar+ [21], which are commonly used in helium ion microscopes and focused ion beam milling instruments. In FIBID, ion-induced interactions can initiate a complex mixture of different processes including ion-induced deposition, secondary electron
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • structural effects present in the opMEMS bridges. Of particular importance was the presence of eigenstrains [39], which would affect the shape of the RoI after FIB milling. Eigenstrains can occur due to mismatches between the crystalline lattices of the deposited materials or due to interactions between
  • only for the visual assessment of the shape and dimensions of a structure, but also for the observation of movement and deflection of an opMEMS. At the same time, the ion beam allows for local doping of the substrate and anisotropic milling. The NanoLab 600i also provides three gas injection systems
  • cantilevers in the direction of the bridge axis (i.e., elongating the cantilevers) reduces the residual strain and, consequently, the distance in the RoI. The alignment of the cantilevers in the RoI was therefore a combination of slit milling and FIB straining of the cantilevers with a total dose of 500 nC
PDF
Album
Full Research Paper
Published 23 Oct 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • milling speed but reduced heat damage. Keywords: biological sample; COMSOL; focused ion beam; forward time–centered space (FTCS); heat damage; SRIM; Introduction FIB-SEMs combine a scanning electron microscope (SEM) and a focused ion beam (FIB) in a single instrument and are increasingly used to prepare
  • the FIB community, especially with the increase in FIB milling of thermally low conductive materials. Recent work assessed the ion beam-induced heat damage and how this can be limited by FIB parameter choice [16][17]. The reported results suggested that ion beam-induced heat can be minimized by using
  • by milling a TEM lamella and assessing the ion beam-induced heat damage in collagen. Purified collagen was selected as the experimental test material for two main reasons. First, it is the principal component of skin, for which well-documented literature values are readily available [21]. Second
PDF
Album
Full Research Paper
Published 27 Sep 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • of 2g (1 µm line, 5 kV, 0.54 nA, 1 µs dwell, 4 nm pitch, 100000 passes) before FIB milling (top) and after milling (bottom). Imaging and milling were performed in a Thermo Fisher Scientific Helios dual-beam instrument. Electron beam-assisted purification of Au and Pt FEBID materials with oxidant gas
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Investigation on drag reduction on rotating blade surfaces with microtextures

  • Qinsong Zhu,
  • Chen Zhang,
  • Fuhang Yu and
  • Yan Xu

Beilstein J. Nanotechnol. 2024, 15, 833–853, doi:10.3762/bjnano.15.70

Graphical Abstract
  • conventional machining methods, thereby increasing the difficulty of verifying microtexture drag reduction. On the other hand, the cost associated with experiments required for microtexture testing, such as wind tunnel tests, is high. The present study employs numerical simulations, high precision milling, and
  • also analyzed based on simulation results. (3) A high-precision five-axis computerized numerical control (CNC) milling machine was used to process the microtextured blades. In order to obtain high-quality surfaces on the microtextured blades, three types of end milling tools were utilized to rough- and
  • CNC machine tool was used to process the blade and the microtextures; the processing steps are shown in Figure 7. First, the blank blade was installed in the machine tool, the size of the blank is h × l × w = 140 × 100 × 25 mm3. Second, the end milling tool was used to mill the blank roughly to
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • processing was simulated using the level set method and experimentally studied by milling a silicon dioxide layer covering a crystalline silicon substrate. The simulation took into account the redeposition of atoms simultaneously sputtered from both layers of the sample as well as the influence of
  • backscattered ions on the milling process. Monte Carlo simulations were applied to produce tabulated data on the angular distributions of sputtered atoms and backscattered ions. Two sets of test structures including narrow trenches and rectangular boxes with different aspect ratios were experimentally prepared
  • possible to deterministically produce a nanoscale topography on the surface of almost any substrate [1]. FIB milling was originally established in semiconductor technology [2] and materials science applications [3]. Now it is increasingly used for fabrication of complex micro- and nanoscale structures and
PDF
Album
Full Research Paper
Published 24 Jun 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • using focused ion beam (FIB) milling and shown as an electron tilt image in Figure 1b, clearly demonstrates the Gaussian shape. For lithography applications, however, both the long tails and the Gaussian cross section are highly undesirable. The tails may form interconnects to neighboring lines, and the
  • precursor flux were carefully selected, as they were found to influence the process significantly (see Supporting Information File 1, sections S2 and S3). The cross-sectional profiles were obtained by FIB milling. Deposits were first covered with a protective Pt/C cover, at least 1.5 μm thick, by FEBID from
  • substrate with a 20 nm gold–palladium layer and a 5 nm titanium adhesion layer. The line was patterned in 500 passes with a dwell time of 500 µs, using a 5 keV beam and 100 pA current with a defocus of 100 nm. Prior to the FIB milling the line was covered with a protective layer of FEBID Pt/C from the
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Modulated critical currents of spin-transfer torque-induced resistance changes in NiCu/Cu multilayered nanowires

  • Mengqi Fu,
  • Roman Hartmann,
  • Julian Braun,
  • Sergej Andreev,
  • Torsten Pietsch and
  • Elke Scheer

Beilstein J. Nanotechnol. 2024, 15, 360–366, doi:10.3762/bjnano.15.32

Graphical Abstract
  • the surface area of the AAO template (or Si substrate) is isolated from the bottom electrodes and the magnetic nanowires, thereby largely improving the flexibility for the design of the top electrodes. After removing the overgrowth by a thin blade or milling in argon plasma, a thick Al film of 180 nm
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • ). Artistic representation of four types of effects that can arise from ion beam interactions with DNA origami nanostructures on Si as reported in present work. (A) and (B) are shaping effects via focused beam milling or crater formation. (C) and (D) are height changes induced in vacuum and in air
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • -beam bombardment, which initially introduces defects into the graphene structure and then knocks out carbon atoms, although the edges of the fabricated nanostructures remain rough after the process [11]. Other direct techniques, such as focused ion beam (FIB) milling with heavy Ga+ ions, are not
  • applicable due to the high impact on the underlying substrate. Helium ion milling was believed to be the most suitable tool for structuring graphene [12]. However, it requires expensive equipment, and even this technique introduces a substantial number of defects into the graphene layer, as shown by Kim et
PDF
Album
Full Research Paper
Published 07 Feb 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • . Fences and edge roughness from the imperfect lift-off process were reported to influence the magnetic properties of nanostructures [22]. The third method, stencil lithography, makes use of a shadow mask, which was fabricated by milling submicrometer apertures on a conventional TEM grid using a focused
  • -standing membrane and as a conductive layer for better imaging during FIB milling. Then FIB milling was performed to create apertures in the SiN membrane representing the patterns to be transferred to the sample. Last, the aluminium layer was removed by submerging the mask in TMAH 3% solution. In this
  • membrane might be different from etching to a free-standing amorphous SiN membrane. The structural integrity of a free-standing crystalline membrane during KOH etching is still to be investigated. An alternative to KOH etching would be FIB milling [38] or RIE [39]. Lift-off fabrication process. SEM images
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • , Luxembourg Thermo Fisher Scientific, Hillsboro, OR, 97124, USA 10.3762/bjnano.14.68 Abstract Ion beam processes related to focused ion beam milling, surface patterning, and secondary ion mass spectrometry require precision and control. Quality and cleanliness of the sample are also crucial factors
  • ]. TEM samples require a small thickness [13] to be electron transparent and are usually prepared through ion milling processes [14][15], which rely heavily on the precise ablation of materials to preserve the crystalline structure of the analyzed sample. These samples, usually shaped as lamellas, are
  • the sample [19] because of in-depth amorphization. Low-energy ion beams (i.e., impact energies below 1 keV) could offer increased precision during milling [20] as well as substantially reduced damage near the surface of the samples. This de facto preserves the structure of the sample as closely as
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • cycle, the subsequent cycles yield broad and low-intensity peaks caused by the electrochemical milling of the active material, leading to reduced size and amorphous structures [59][60]. For the Ge@C electrodes, the first cathodic peaks in the potential range of 0.5–1.5 V vs Li/Li+, are assigned to the
PDF
Album
Full Research Paper
Published 26 Jun 2023

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • nanoparticles was fabricated using high-energy ball milling [86]. Ag clusters (5–10 nm) were homogeneously distributed on the flocculated BiVO4 particles (50–100 nm). The structure of the Ag-doped BiVO4 nanocomposite would promote the efficiency of the photodegradation of acid blue dyes. Huang and co-workers
PDF
Album
Review
Published 11 Nov 2022
Other Beilstein-Institut Open Science Activities