Search results

Search for "photocatalysis" in Full Text gives 141 result(s) in Beilstein Journal of Nanotechnology.

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • ]. Additionally, because of their often high efficiency at harnessing solar energy, they find application in photocatalysis and photovoltaics [5][6]. Optimizing these applications requires unravelling the often complex processes that influence functionality through an atomic-level description. To this end
PDF
Album
Review
Published 10 Jun 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • structures especially under external sonication and mechanical stimuli. Reversible self-assembly of graphene-based nanosheets in water is essential to many applications, such as adsorption, photocatalysis, biosensing, drug delivery, aqueous paints, and multifunctional coatings [48][49][50]. Figure 6c
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Synthesis of a multicomponent cellulose-based adsorbent for tetracycline removal from aquaculture water

  • Uyen Bao Tran,
  • Ngoc Thanh Vo-Tran,
  • Khai The Truong,
  • Dat Anh Nguyen,
  • Quang Nhat Tran,
  • Huu-Quang Nguyen,
  • Jaebeom Lee and
  • Hai Son Truong-Lam

Beilstein J. Nanotechnol. 2025, 16, 728–739, doi:10.3762/bjnano.16.56

Graphical Abstract
  • substantial economic losses. Nowadays, various methods, including adsorption, biological processing, photocatalysis, and electrochemical methods, have been used to remove antibiotics from contaminated water. However, these conventional treatment methods are restricted by costs, prolonged treatment durations
PDF
Album
Full Research Paper
Published 27 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • , photocatalysis, and solar energy technologies [60]. Moreover, electrospinning allows for the incorporation of multiple components with distinct morphological characteristics, positioning it as a promising approach for developing innovative materials, particularly in biological contexts [61][62]. The demand for
PDF
Album
Review
Published 24 Apr 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • capacity to absorb light and concerns about catalytic stability, photocatalysis outperforms other advanced oxidation processes in multiple aspects. This study focuses on summarizing recent advances in the sustainable removal of antibiotics using semiconductor-based photocatalysts. By reviewing the latest
  • semiconductor-based photocatalysts for the degradation of antibiotics (Figure 1). The appeal of photocatalysis lies in its potential to achieve extensive mineralization, converting organic pollutants into harmless mineral compounds. Furthermore, its nonselective nature enables it to address a broad spectrum of
  • contaminants, making it a versatile option for environmental remediation across various water and air treatment applications. These features collectively make photocatalysis an attractive approach for addressing pollution challenges in diverse settings. In recent years, several significant review papers have
PDF
Album
Review
Published 25 Feb 2025

Clays enhanced with niobium: potential in wastewater treatment and reuse as pigment with antibacterial activity

  • Silvia Jaerger,
  • Patricia Appelt,
  • Mario Antônio Alves da Cunha,
  • Fabián Ccahuana Ayma,
  • Ricardo Schneider,
  • Carla Bittencourt and
  • Fauze Jacó Anaissi

Beilstein J. Nanotechnol. 2025, 16, 141–154, doi:10.3762/bjnano.16.13

Graphical Abstract
  • photocatalysts for treating solutions containing the MB dye (400 mg·L−1) at 25 °C. The results showed adsorption and photocatalysis efficiency above 94% for both samples. The blue-colored BEOx and BEPh samples were then applied as a hybrid pigment. The power pigment and its dispersion in colorless paint were
  • cereus (ATCC 10876) and Proteus mirabilis (ATCC 35649). The analysis revealed remarkable antibacterial activity against Proteus mirabilis, suggesting a preferential selectivity for Gram-negative bacteria. Keywords: adsorption; bentonite; hybrid pigment; niobium; photocatalysis; water remediation
  • photocatalysis is a cost-effective alternative to biological treatment methods for purifying polluted water [8]. Using semiconductors as heterogeneous catalysts proves to be more efficient than traditional methods, as the photocatalytic process gradually decomposes contaminating molecules without generating
PDF
Album
Supp Info
Full Research Paper
Published 10 Feb 2025

Characterization of ZnO nanoparticles synthesized using probiotic Lactiplantibacillus plantarum GP258

  • Prashantkumar Siddappa Chakra,
  • Aishwarya Banakar,
  • Shriram Narayan Puranik,
  • Vishwas Kaveeshwar,
  • C. R. Ravikumar and
  • Devaraja Gayathri

Beilstein J. Nanotechnol. 2025, 16, 78–89, doi:10.3762/bjnano.16.8

Graphical Abstract
  • electronic transition, making them suitable for further applications in photocatalysis, electronics, and optoelectronics. Photocatalytic study ZnO NPs were utilized in a photocatalytic degradation test to reduce the concentration of the harmful dye methylene blue (MB). A solution containing 20 mg of ZnO NP
PDF
Album
Full Research Paper
Published 30 Jan 2025

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  • use in photocatalysis processes (i.e., degradation of oxalic acid). In addition, the measured excitonic PL indicates the need for deeper investigation on the ability of the investigated materials to generate reactive oxygen species (ROS) under light irradiation. The photoluminescence signal of the
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • massive guidance in synthesizing an efficient photocatalyst for CH4 conversion under mild conditions. Keywords: photocatalysis; photocatalytic CH4 oxidation; p–n heterojunction; TiO2/SiNWs; Introduction Methane (CH4), which can take the form of liquefied natural gas, is one of the crucial sources of
  • deposition on catalyst surfaces [4][5][6][7]. Therefore, sustainable strategies for both green conversion and atmospheric removal of CH4 are urgently necessary [8][9][10][11]. Semiconductor-based photocatalysis has been attracting scientists’ attention because of its environmental friendliness and easy
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • water and remove volatile organic compounds using photocatalysis. The evaporation rate was 2.24 kg·m−2·h−1 [113]. Volatile aldehydes have a negative influence on both human health and the environment. Thus, a quick, simple, and highly accurate method for the simultaneous detection and removal of several
PDF
Album
Review
Published 22 Aug 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • Arab Emirates 10.3762/bjnano.15.68 Abstract Visible-light-driven photocatalysis using layered materials has garnered increasing attention regarding the degradation of organic dyes. Herein, transition-metal dichalcogenides MoS2 and WS2 prepared by chemical vapor deposition as well as their intermixing
  • several cycles. This finding underscores the advantageous outcomes of intermixing WS2 and MoS2, shedding light on the development of an efficient and enduring photocatalyst for visible-light-driven photodegradation of methylene blue. Keywords: methylene blue; MoS2/WS2 composite; photocatalysis
  • place corrective actions for the development of efficient strategies for water treatment [3]. Following these measures, various technologies have proven their efficacy for water depollution, including adsorption and photocatalysis, and are often utilized for heavy metals, pharmaceuticals, pesticide
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue

  • Dalia Chávez-García,
  • Mario Guzman,
  • Viridiana Sanchez and
  • Rubén D. Cadena-Nava

Beilstein J. Nanotechnol. 2024, 15, 755–766, doi:10.3762/bjnano.15.63

Graphical Abstract
  • industrial wastewater. Photocatalysis is an environmentally friendly water purification method that uses light-activated catalysts to destroy contaminants, offering an advantage over traditional methods that merely transfer contaminants between phases [17][18][19]. While some studies on CQDs involve costly
  • of CQDs range from sensing and cell imaging to drug delivery, photocatalysis, and energy conversion [26][27][28][29]. In this study, biomass from watermelon shell and grape pomace waste is used as the carbon source. The hydrothermal method employing urea, nitric acid, and water is utilized. Samples
  • precursors, this research aims to develop a more sustainable and cost-effective approach for producing CQDs as catalysts in the photocatalysis process. Utilizing watermelon peels and grape pomace as raw materials contributes to waste valorization and promotes a circular economy concept. The ultimate goal is
PDF
Album
Full Research Paper
Published 25 Jun 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • the laser-generated nanoparticles in nanomedicine [60][61] and catalysis [13][54][62][63], including electro- and photocatalysis [13]. The liquid’s influence on the nanoparticle properties as well as its decomposition products, in contrast, have received significantly less attention. Some past reviews
PDF
Album
Review
Published 05 Jun 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • [2]. WOx nanostructures, exhibiting high chemical and thermal stability, and structural flexibility, have obvious relevance in areas such as photocatalysis [22], electrochromism [23], supercapacitors [24], and lithium batteries [25] and have undergone extensive investigations during the last decades
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • materials is one of the most relevant fields in materials science. Layered double hydroxides (LDHs), a versatile class of anionic clays, exhibit great potential in photocatalysis, energy storage and conversion, and environmental applications. However, its implementation in real-life devices requires the
  • < x < 0.33). An− symbolizes a constituent ranging from (in)organic anions to macromolecules, and Sv stands for solvent molecules. This general composition leads to a plethora of highly tunable systems [12][13][14][15][16] with relevance in environmental applications [17], photocatalysis [18], energy
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • , and related fields [4]. To reduce contaminants (e.g., air pollution (CO2, NOx, SO2), POPs) there are many routes (e.g., physicochemical approaches, biological fixation, advanced oxidation process, and photocatalysis [5][6][7][8]). Among the aforementioned methods, the photocatalysis route is
  • appropriate for treating pollutants, even in atmospheric conditions [9][10][11]. Moreover, the photocatalysis method is also a potential solution for environmental remediation, carbon emission reduction, and renewable energy production [12][13][14]. Combining photocatalysts and sunlight irradiation is a
  • potential strategy for water treatment via the effectively infinite energy from the sun and the photocatalysts. Photocatalysis based on nanostructured semiconductors can significantly contribute to tackling several environmental pollution problems, sustainable synthesis, and energy production [2][15][16
PDF
Album
Editorial
Published 13 Jun 2023

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • , making them multifunctional electronic and optical materials for applications in ion batteries [3][4], lubricants [5], gas detectors [6][7], photochromism [8][9], photocatalysis [10][11], and superconductors [12][13]. The molybdenum oxide MoO3 can crystalize into several structures, including α-MoO3 [14
  • Information Supporting Information File 28: Photocatalysis performance of the MoO3 samples. Acknowledgements We thank the Institutional Center for Shared Technologies and Facilities of Institute of Process Engineering, Chinese Academy of Sciences for the in situ X-ray diffraction experiments. Funding This
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • photocatalysis, adsorption, and EM absorption [25]. Researchers have developed ZnO-based absorbing materials with different microstructures, such as core–shell structures [26], flower-like structures [27], rod-like structures [28], cage-like structures, and nanoparticles [29][30]. Wu et al. demonstrated that it
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • environment worldwide, in addition to the global energy crisis, is the increasing water pollution caused by micropollutants such as antibiotics and persistent organic dyes. Nanostructured semiconductors in advanced oxidation processes using photocatalysis have recently attracted a lot of interest as a
  • treat contaminated water and wastewater, including adsorption, bioremediation, precipitation, electrocoagulation, filtration, membrane separation, flocculation, centrifugation, advanced oxidation processes based on photocatalysis, and chemical coagulation [4][5][6][7][8][9][10][11]. Each of these
  • -photochemical techniques, such as chemical, radiation-induced, cavitation, electrochemical techniques, and photochemical processes [11][15][16][17]. One of the AOPs, photocatalysis, uses natural light – a resource that is both clean and recyclable – to completely degrade a variety of organic pollutants and
PDF
Album
Review
Published 03 Mar 2023

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • , Poland Institute of Physics, University of Rzeszow, 1 Pigonia Street, PL-35-310, Rzeszów, Poland 10.3762/bjnano.13.126 Abstract Phenol and 2,6-dibromo-4-methylphenol (DBMP) were removed from aqueous solutions by ozonolysis and photocatalysis. The properties and structural features of the catalysts and
  • the available electrons, and, as a result, bromide ions can be released. The results confirm that magnetite is an effective photocatalyst in the degradation of halogenated aromatic pollutants. Keywords: magnetite; ozonolysis; persistent organic pollutants; photocatalysis; water treatment
  • , ozonation, Fenton chemistry, and photocatalysis have been successfully used to remove persistent organic pollutants (POPs) or as a pre-treatment in conventional or biological methods [10]. Ozonation is an AOP technique that has been widely used to remove organic compounds such as drugs, pesticides
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • shows zero activity in the visible region. Keywords: carbon modification; hexagonal boron nitride (HBN); LED light; phenol; photocatalysis; Introduction Hexagonal boron nitride (HBN) commonly known as white graphene belongs to a class of two-dimensional layered crystalline materials. It comprises
  • -responsive material with improved charge carrier density (2.97 × 1019 cm−3). The LED light harvesting properties were analysed through various established characterization techniques and the photocatalysis was verified by eliminating the aqueous phase methylene blue (MB: 93.83%) and phenol (48.56%) moieties
  • conditions. The linear sweep voltammetry (LSV) studies were conducted under both dark and light conditions with a scanning speed of 5 mV/s. Photocatalytic activity The LED-light-driven photocatalysis experiments were performed in a 250 mL conical flask containing 50 mg of the as-synthesized material and 200
PDF
Album
Full Research Paper
Published 22 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • environmental restoration and energy conversion is photocatalysis powered by solar light. Traditional photocatalysts have limited practical uses due to inadequate light absorption, charge separation, and unknown reaction mechanisms. Discovering new visible-light photocatalysts and investigating their
  • modification is crucial in photocatalysis. Bi-based photocatalytic nanomaterials have gotten much interest as they exhibit distinctive geometric shapes, flexible electronic structures, and good photocatalytic performance under visible light. They can be employed as stand-alone photocatalysts for pollution
  • fabrication techniques and enhancement in Bi-based semiconductor photocatalysts. Various environmental applications, such as H2 generation and elimination of water pollutants, are also discussed in terms of semiconductor photocatalysis. Future developments will be guided by the uses, issues, and possibilities
PDF
Album
Review
Published 11 Nov 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • contributes significantly to the photocatalytic NO degradation efficiency. A photocatalysis mechanism of MgO@g-C3N4 is proposed taking into account the results of the DRS and ESR analyses and trapping tests. Because of the large bandgap of MgO, only g-C3N4 generates e−–h+ pairs under visible light (Equation 8
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • technologies have been proposed to remove organic pollutants from water, including coagulation coupled with sedimentation, biological processes, membrane filtration, adsorption, advanced oxidation, catalysis, and photocatalysis [1][2][3]. Using semiconductors as photocatalysts has been a widely studied
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • nanomaterials has proved to be useful for applications in a variety of disciplines, including chemical or biological sensing, bioimaging, drug delivery, photodynamic therapy, electrocatalysis, and photocatalysis, with advantages over commonly used semiconductor dots or conventional fluorescent probes such as
  • techniques for improving synthesis, characterization, yield, and applications of CDs There are several outstanding review articles on different applications, such as photochemical and electrochemical applications [32], photocatalysis [33], optoelectronics [34], wastewater treatment [35], food safety
PDF
Album
Review
Published 05 Oct 2022
Other Beilstein-Institut Open Science Activities