Search results

Search for "photovoltaic" in Full Text gives 156 result(s) in Beilstein Journal of Nanotechnology.

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
  • liquid using different wavelengths and laser fluences [18]. During the synthesis of FeS2 NPs by PLAL in different solvents, Motohashi et al. has reported the formation of hematite (Fe2O3) as major product and Fe–S as minor product [19]. Sai et al. synthesized pyrite nanoparticles for photovoltaic
  • without coming into contact with any surface electrons [64]. In summary, self-powered photodetectors operate based on the photovoltaic effect in semiconductors, where incident light generates electron–hole pairs. The resulting photocurrent arises from the separation and directs movement of these charge
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • , optoelectronic, or photovoltaic devices, as they combine a direct bandgap of tunable size with high charge carrier mobility [20]. Furthermore, they can be grown on Si substrates [21][22], which enables integration with a well-established technology platform and constrains the use of high performance, but
  • junction nanowires have been reported to show an open circuit voltage between 0.6 and 0.9 eV in photovoltaic measurements [31][32]. While those open circuit voltages can be considered as the built-in potential in the nanowire bulk, the values measured by XPS result from the nanowire surface, demonstrating
PDF
Album
Review
Published 23 May 2025

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • ; hole transport layer doping; Kelvin probe force microscopy; perovskite solar cells; Introduction Perovskite solar cells (PSCs) are a promising class of photovoltaic material that exhibits high power conversion efficiencies and relies on a low-cost solution-processed fabrication method [1][2][3][4]. At
  • the HTL with BCF, we initially characterized the photovoltaic performance of each of the four solar cell batches with a solar simulator under 1 Sun irradiation (1000 W/m2). The corresponding parameters are reported in Table 1 and they refer to a statistical analysis of backward scans from ten devices
  • of each batch. A slow scan rate of 60 mV/s was used for the current density–voltage (J–V) curves so as the ion distribution within the cell is under quasi-equilibrium [39]. We notice that BCF had a beneficial effect on both spiro-OMeTAD and PTAA in terms of photovoltaic parameters. Whilst the
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • reliability of capacitors [10]. Similarly, in next-generation photovoltaic devices, the dielectric properties of absorber layers, such as lead-halide perovskites, affect carrier recombination and electric field distribution, thereby influencing power conversion efficiency [11]. At the nanoscale, the
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • Usha Rani Kafi Devi Divya Gupta Sanjeev Aggarwal Ion Beam Centre, Department of Physics, Kurukshetra University, Kurukshetra-136119, India 10.3762/bjnano.16.38 Abstract Molybdenum (Mo) thin films have extensive applications in energy storage devices and photovoltaic solar cells because of their
  • films, enhancing their performance in applications such as photovoltaic devices, energy storage, and integrated circuits. (A) Nitrogen ion trajectories, (B) distribution of ions, (C) distribution of losses due to ionization, and (D) vacancy distribution in a Mo thin film. GXRD patterns of as-deposited
PDF
Album
Full Research Paper
Published 01 Apr 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • the electronic density of the material, causing a lowering in reflectivity. The tailoring of the reflectivity by developing nanostructures is widely applicable for anti-reflective coatings and photovoltaic device applications [50][51]. The formation of nanostructures on the silicon surface by inert
PDF
Album
Full Research Paper
Published 31 Mar 2025

Comparison of organic and inorganic hole transport layers in double perovskite material-based solar cell

  • Deepika K and
  • Arjun Singh

Beilstein J. Nanotechnol. 2025, 16, 119–127, doi:10.3762/bjnano.16.11

Graphical Abstract
  • Deepika K Arjun Singh Department of Applied Sciences, The Northcap University, Gurugram, India 10.3762/bjnano.16.11 Abstract Perovskite solar cells (PSCs) are in the focus of the photovoltaic industry. Lead-free double perovskite solar cells (DPSCs) have become an essential alternative of lead
  • -based PSCs as a promising photovoltaic material. The double perovskite layer is a remarkable choice as active layer because of intrinsic carrier stability, low exciton binding energy, and low toxicity. Herein, the optimization of a planar DPSC with a multifunctional double perovskite absorber layer
  • , extended carrier diffusion lengths, and adjustable direct bandgaps. Also, there are well-established fabrication techniques that have positioned PSCs as a solution-processable photovoltaic technology [4]. Over the past few years, a significant improvement in the PCE of the PSCs was reported, from 3.8% in
PDF
Album
Full Research Paper
Published 06 Feb 2025

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • potential as a next-generation photovoltaic technology [41][42]. These cells offer a compelling alternative to traditional silicon solar cells because of the low manufacturing cost. Additionally, CQDs possess a unique property – their bandgap can be tuned by adjusting the size of the dots. This allows them
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Out-of-plane polarization induces a picosecond photoresponse in rhombohedral stacked bilayer WSe2

  • Guixian Liu,
  • Yufan Wang,
  • Zhoujuan Xu,
  • Zhouxiaosong Zeng,
  • Lanyu Huang,
  • Cuihuan Ge and
  • Xiao Wang

Beilstein J. Nanotechnol. 2024, 15, 1362–1368, doi:10.3762/bjnano.15.109

Graphical Abstract
  • and the scanning photocurrent map under zero bias, we reveal a non-zero short-circuit current in the graphene/3R WSe2/graphene heterojunction region, demonstrating the bulk photovoltaic effect. Furthermore, the out-of-plane polarization enables the 3R WSe2 heterojunction region to achieve an ultrafast
  • polarization, offering promising advances in optoelectronics [23][30]. One of the key optoelectronic phenomena in 2D semiconductor materials is the photocurrent response. The polarization, which results in spontaneous photocurrent under zero bias, gives rise to the bulk photovoltaic effect (BPVE), which can
  • angle of two monolayers of WSe2. The crystal structures of 3R WSe2 leads to the breaking of OOP symmetry, confirmed by SHG measurements. Subsequently, the bulk photovoltaic effect in the graphene/3R WSe2/graphene vertical heterojunction was confirmed through the output characteristic curve and
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • 2004, the unique properties of two-dimensional materials have sparked intense research interest regarding their use as alternative materials in various photonic applications. Transition metal dichalcogenide monolayers have been proposed as transport layers in photovoltaic cells, but the promising
  • optoelectronic devices, including next-generation solar cells. The hybrid quantum-to-macroscopic methodology presented here applies to broader classes of 2D and 3D materials and structures, showing a path to the computational design of future photovoltaic materials. Keywords: 2D materials; density functional
  • application in photovoltaic solar cells. The proposed Ge2Se2 monolayer exhibited excellent thermodynamic stability, higher carrier mobilities (due to the presence of valleys in the CB/VB), and good optical response (an interband transition in the visible region). Considering the proper design criteria and
PDF
Album
Full Research Paper
Published 11 Sep 2024

Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties

  • Monika Ozga,
  • Eunika Zielony,
  • Aleksandra Wierzbicka,
  • Anna Wolska,
  • Marcin Klepka,
  • Marek Godlewski,
  • Bogdan J. Kowalski and
  • Bartłomiej S. Witkowski

Beilstein J. Nanotechnol. 2024, 15, 743–754, doi:10.3762/bjnano.15.62

Graphical Abstract
  • -cleaning [1], anti-corrosion [2], and antibacterial [3] coatings. Like other CuO nanostructures, thin films also show potential for applications in photovoltaic cells [4][5], lithium-ion batteries [6], supercapacitors [7], gas sensors [8], and biosensors [9]. Furthermore, the literature reports their
PDF
Album
Full Research Paper
Published 24 Jun 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • fabricating WOx-based optoelectronic devices, including photovoltaic cells. Keywords: annealing; glancing angle sputter deposition; heterojunction; tungsten oxide; work function; Introduction Tungsten oxide (WOx; x ≤ 3) is a popular transition-metal oxide for various optoelectronic devices because of its
  • observations demonstrate a wide range of tunability and correlation among several physicochemical properties of glancing angle-deposited WOx films, which is due to serve as a guide for fabricating WOx-based optoelectronic devices, including carrier-selective contacts for photovoltaic cells. Experimental NS-WOx
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • was determined. The resistivity of the layers was determined using impedance spectroscopy. Simulations (General-Purpose Photovoltaic Device Model) showed a performance improvement in the cells with quantum dots of 0.36–1.45% compared to those without quantum dots. Keywords: efficiency; luminescence
  • ; organic solar cells; quantum dots; Introduction Organic solar cells have been intensively developed in recent years as the third generation [1][2] of photovoltaic cells, next to dye-synthesized solar cells and perovskite cells. One of the relatively novel concepts of organic solar cells that yield higher
  • mixture of donor and acceptor materials enriched with quantum dots. Poly(3-hexylthiophene-2,5-diyl) (P3HT, donor) and 6,6-phenyl-C71-butyric acid methyl ester (PC71BM, acceptor) are used as base materials and reference materials in organic photovoltaic cell research [42][43][44] (Figure 1). These
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

A multi-resistance wide-range calibration sample for conductive probe atomic force microscopy measurements

  • François Piquemal,
  • Khaled Kaja,
  • Pascal Chrétien,
  • José Morán-Meza,
  • Frédéric Houzé,
  • Christian Ulysse and
  • Abdelmounaim Harouri

Beilstein J. Nanotechnol. 2023, 14, 1141–1148, doi:10.3762/bjnano.14.94

Graphical Abstract
  • voltage of +1 V). The origin of I–V curves not going through zero is commonly associated with photovoltaic effects, which was indeed validated by the disappearance of this observation when the laser of the AFM setup was switched off. Although, a photovoltaic effect might be intriguing in current
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • reference substrate, a bulk organic photovoltaic heterojunction thin film, and an optoelectronic interface obtained by depositing caesium lead bromide perovskite nanosheets on a graphite surface. The conclusion provides perspectives for future improvements and applications. Keywords: heterodyne
  • development of KPFM-based approaches specifically designed to investigate photogeneration mechanisms and charge dynamics at the nanoscale in photovoltaic and optoelectronic materials is an active research area. In photoassisted KPFM, the idea is to probe the surface photovoltage (SPV), which is the
  • characterize the surface photovoltage dynamics are acquired on a photovoltaic organic bulk-heterojunction (BHJ) thin film. The time-constant values are shown to be fully consistent with the results of pump-probe KPFM. Last, the ability of DHe-KPFM to detect weak SPV signals is illustrated by investigating
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • in combination with illumination has been used to investigate photo-generated charge carriers of photovoltaic materials and devices. This is done by determining the CPD shift under illumination known as surface photovoltage (SPV) by calculating SPV = CPDlight − CPDdark, whereas CPDdark is the CPD in
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • ; surface photovoltage; Introduction The development of photovoltaic (PV) technologies has progressed significantly over the past twenty years as a result of considerable advancements in solar cell device engineering and material science. As a consequence, solar cells have turned into complex structures
  • containing numerous layers and interfaces [1]. The capability to conduct local investigations at the nanoscale level that provide information on the electrical properties of materials and along physical interfaces is becoming crucial for solar photovoltaic device efficiency improvement [2]. Electrical
PDF
Album
Full Research Paper
Published 14 Jun 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • electricity, chemical energy, and heat through photovoltaic, photochemical, and photothermal processes, respectively. Even though electricity can be converted into thermal energy, it is less efficient than the direct photothermal process. Photothermal effects are produced by electronic excitation and
PDF
Album
Review
Published 04 Apr 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • lowering the cost of treatment. Aside from its magnetic and optical properties, BiFeO3 also exhibits piezoelectric characteristics, photovoltaic effects, switchable ferroelectric diode effects, and spontaneous polarisation enhancement. It is also sensitive to epitaxial strain [88]. Given its intriguing
PDF
Album
Review
Published 03 Mar 2023

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • photocatalytic, photoelectrochemical, and photovoltaic–photoelectrochemical systems. The features and the operating mechanism of photoelectrochemical water splitting are detailed in [10][11]. Photoelectrochemical water splitting has attracted much research interest because it has some outstanding advantages. The
PDF
Album
Full Research Paper
Published 14 Dec 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • nanocrystals. The X-ray diffraction pattern confirms the hexagonal structure. Due to the near-infrared light absorption capability, the synthesized QDs were used as the sensitizer to fabricate QDSCs. The fabricated QDSCs were characterized by using electrochemical impedance spectroscopy and photovoltaic
  • performance studies. The fabricated QDSC have superior electrochemical activity with a photoconversion efficiency of 4.91%. Keywords: alloyed QDs; photoconversion efficiency; photovoltaic performance; quantum dots; Introduction Human life depends on various forms of energy. Approximately 13 terawatts of
  • energy are required to maintain the current lifestyle of the world’s population [1]. Our primary source of clean abundant energy is the sun. The amount of energy received from the sun is about twice of that obtained from all non-renewable resources. Photovoltaic (PV) cells or solar cells are considered a
PDF
Album
Full Research Paper
Published 14 Nov 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • one-dimensional material with high carrier mobility (308 cm2·V−1·s−1) and rapid response time [8][9][10]. These one-dimensional materials are ideal for photovoltaic and photocatalytic applications. The KP15 is considered to be a novel low-dimensional material with layered structure, high hole carrier
  • mobility (1000 cm2·V−1·s−1), and highly anisotropic properties [11]. The photodetectors prepared with KP15 have a fast response time and are ideal materials for photovoltaic applications [12]. Based on our previous studies, KP15 is also a one-dimensional material with a defect-free surface [13][14]. This
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • conventional Pt/FTO CE (15.3 mA·cm−2). This work reports for the first time the possibility to obtain a honeycomb-like MoS2 thin film morphology by the CV method and investigates the effect of film structure on the electrocatalytic activity and photovoltaic performance of CEs for DSSC application. Keywords
  • the effect of MoS2 morphology and thickness on the performance of the DSSCs, the photovoltaic performance of DSSCs using different MoS2 CEs was investigated under illumination. The J–V curves and the corresponding photovoltaic parameters of DSSCs are given in Figure 7 and Table 2, respectively. The
  • DSSC using MoS2-1.25/FTO CE displayed an excellent photovoltaic performance compared to that with a Pt/FTO a CE. In particular, the obtained value of 16.3 mA·cm−2 for the short-circuit photocurrent (Jsc) was found to be higher than that of Pt/FTO CE (15.3 mA·cm−2). This is attributed to the high number
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • : aluminium zinc oxide; magnetron sputtering; thin film; transparent conducting oxide; transparent electronics; Introduction Aluminium-doped zinc oxide (AZO) is a potential alternative to indium tin oxide (ITO) for transparent conducting oxide (TCO) electrodes in transparent electronic and photovoltaic
  • devices (e.g., touch screens, light emitting diodes, optoelectronics, and photovoltaic organic devices) [1][2][3][4][5]. AZO has good long-term stable electrical and optical parameters, including high electrical conductivity and high optical transmission in the visible range. For the purpose of
PDF
Album
Full Research Paper
Published 31 Mar 2022

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • Abstract Tin selenide (SnSe) has thermoelectric (TE) and photovoltaic (PV) applications due to its exceptional advantages, such as the remarkable figure of merit (ZT ≈ 2.6 at 923 K) and excellent optoelectronic properties. In addition, SnSe is nontoxic, inexpensive, and relatively abundant. These aspects
  • is exceptionally promising for the next generation of photovoltaic and thermoelectric devices at room and high temperatures. Keywords: density functional theory (DFT); electronic properties; lattice thermal conductivity; optical properties; thermodynamic properties; thermoelectric properties; tin
PDF
Album
Full Research Paper
Published 05 Oct 2021
Other Beilstein-Institut Open Science Activities