Search results

Search for "pore size" in Full Text gives 199 result(s) in Beilstein Journal of Nanotechnology.

Characterization of ion track-etched conical nanopores in thermal and PECVD SiO2 using small angle X-ray scattering

  • Shankar Dutt,
  • Rudradeep Chakraborty,
  • Christian Notthoff,
  • Pablo Mota-Santiago,
  • Christina Trautmann and
  • Patrick Kluth

Beilstein J. Nanotechnol. 2025, 16, 899–909, doi:10.3762/bjnano.16.68

Graphical Abstract
  • values. Although only three pores are shown, they illustrate the larger size variation in PECVD SiO2 compared to the uniform pore size in thermal SiO2. From SEM measurements, the standard deviation in the pore radius was measured to be ≈1.8 nm for thermal SiO2 but ≈8 nm for PECVD SiO2. The reader must
  • other systems, the pore size homogeneity in thermal SiO2 is exceptional. In PECVD SiO2 samples, nanopores fabricated using 185 MeV Au ion irradiation show slightly larger cone angles compared to those created with 89 MeV and 1.6 GeV Au ions. This variation may result from sample-to-sample difference
PDF
Album
Full Research Paper
Published 12 Jun 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • cellular responses. These membranes can be tailored with a diverse range of fibers, weights, densities, porosities, pore size distributions, chemical compositions, morphologies, hardness levels, and elastic properties [65][66]. Importantly, electrospun membranes and the ECM share substantial structural and
  • . Although electrospun SF nanofibers are highly biocompatible, their tiny pore size inhibits cell penetration. To solve this, sodium chloride crystals of various sizes were incorporated into the nanofibers during fabrication, resulting in increased pore size. The wound healing properties of the 3D SF
  • models using permeable freeze-dried silk, a highly porous sponge with an adequate pore size is crucial for controlling cell migration and proliferation, particularly when the objective is to generate a dermally well-vascularized layer [105]. The most common approach for constructing a double-layer skin
PDF
Album
Review
Published 24 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • used for nanoparticle preparation. The nanoscale size is particularly important in mucoadhesive systems designed for gastric delivery because of the mesh-like structure of gastric mucus. Since the pore size in gastric mucus is around 500 nm [9], the smaller the nanoparticle, the better the mucus
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • sensitive compounds [3]. Electrospun nanofibers exhibit a large surface area, high porosity, and small pore size, making them useful for a wide range of applications, as shown in Figure 1. Chitosan/polyvinyl alcohol (PVA) electrospun nanofibers have many applications, including water treatment, biomedical
PDF
Album
Review
Published 26 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • selectivity. In contrast, inorganic membranes are rigid with small, uniform pores, offering high selectivity but only modest permeability [70]. For both membrane types, increased uniformity in pore size distribution and greater pore rigidity generally enhance selectivity [70][71][72]. Typically, inorganic
  • described in section 2, engineering the MOF pore size is pivotal for enabling CO2 capture based on size exclusion. This property can be controlled by the choice of the organic linker, that is, via isoreticular expansion. This method involves selecting a linker with a different size but a similar molecular
  • -labile linkers that can be labilized and cleaved provides a way to expand or contract MOF pores post-synthetically in a controlled manner [107][108]. In addition, the choice of metal ion comprising the MOF nodes may also be altered to change the MOF pore size, though this may lead to changes in the
PDF
Album
Supp Info
Review
Published 12 Feb 2025

TiO2 immobilized on 2D mordenite: effect of hydrolysis conditions on structural, textural, and optical characteristics of the nanocomposites

  • Marina G. Shelyapina,
  • Rosario Isidro Yocupicio-Gaxiola,
  • Gleb A. Valkovsky and
  • Vitalii Petranovskii

Beilstein J. Nanotechnol. 2025, 16, 128–140, doi:10.3762/bjnano.16.12

Graphical Abstract
  • -loaded samples. The Al 2p and O 1s XPS spectra of the MOR-L compound are given for comparison. The inset in (a) shows the decomposition of the Al 2p spectrum for Ti-W24h-C. (a, b) Nitrogen adsorption isotherms at 77 K, (c, d) pore size distribution and pore volume in calcined nanocomposites Ti-WNh-C (a
PDF
Album
Full Research Paper
Published 10 Feb 2025

Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster

  • Joel Antúnez-García,
  • Roberto Núñez-González,
  • Vitalii Petranovskii,
  • H’Linh Hmok,
  • Armando Reyes-Serrato,
  • Fabian N. Murrieta-Rico,
  • Mufei Xiao and
  • Jonathan Zamora

Beilstein J. Nanotechnol. 2025, 16, 44–53, doi:10.3762/bjnano.16.5

Graphical Abstract
  • with a three-dimensional structure comprising pores and cavities of molecular dimensions. This unique structure enables them to operate as molecular sieves, allowing molecules smaller than the pore size to pass through while blocking the diffusion of larger ones. Furthermore, the physicochemical
PDF
Album
Full Research Paper
Published 17 Jan 2025

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  • explained by the influence of the microwave irradiation, which is known to create materials with fewer defects [49]. Porosimetry The nitrogen adsorption–desorption isotherms and pore size distributions are presented in Figure 7. The adsorption and desorption branches for both samples appear to be almost
  • parallel in Figure 7. The insets show a wide pore size distribution reaching 120 nm and pore width maxima located in the mesoporosity area for both samples (40 nm for SG and 35–45 nm for MW). Similar textural features for SG and MW samples are presented in Table 3. UV–vis spectroscopy The recorded UV–vis
  • vacuum before analysis. Specific surface areas (S-BET) were calculated according to the Brunauer–Emmett–Teller (BET) equation, using adsorption data in the relative pressure range between 0.05 and 0.30. The pore size distribution curves were obtained from the desorption data using the BJH (Barrett–Joyner
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • because of their extremely large surface area-to-volume ratio, small pore size, and high porosity. Nanofibers are known to be highly functional systems with the ability to mimic the structure and function of the natural bone matrix, facilitating osteogenesis for cell proliferation and bone regeneration
  • mixed polymers, and the formation of highly porous and continuous fibers are the remarkable features of this method. The importance of nanofiber-based scaffolds in bone tissue regeneration is increasing because of suitable pore size, high porosity, osteoinduction, induction of bone growth with
  • systems because of their extremely large surface area-to-volume ratio, small pore size, and high porosity. Nanofibers are known to be highly functional systems with the ability to mimic the structure and function of the natural bone matrix and to facilitate osteogenesis for cell proliferation and bone
PDF
Album
Review
Published 25 Jul 2024

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • , using the Brunauer–Emmett–Teller (BET) model, and the total pore volume and pore size distribution, using the Horvath–Kawazoe (HK) model. The samples were activated under vacuum at 150 °C for 12 h before being introduced into the porosity analyzer. CO2 and N2 adsorption test The characteristic
  • /desorption isotherms characteristic of type I. Additionally, a pore size distribution was observed with three prominent peaks at approximately 0.62, 1.30, and 1.75 nm within the micropore region defined by IUPAC (less than 2.0 nm), as depicted in Figure 5b. These observations confirm that the reference
  • sample has a microporous structure with a BET surface area and a total pore volume of 1825.4 m2·g−1 and 0.772 cm3·g−1, respectively. Similarly, the micropore structures were also determined in the obtained M-100Fe@Fe2O3 samples by examining the profiles of isotherms and pore size distributions. Notably
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Cholesterol nanoarchaeosomes for alendronate targeted delivery as an anti-endothelial dysfunction agent

  • Horacio Emanuel Jerez,
  • Yamila Roxana Simioni,
  • Kajal Ghosal,
  • Maria Jose Morilla and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 517–534, doi:10.3762/bjnano.15.46

Graphical Abstract
  • through 0.4 μm and 0.2 μm pore size polycarbonate filters using a thermobarrel extruder (Northern Lipids, Inc. BC, Canada). Free ALN was removed by gel filtration on Sephadex G-50. Briefly, aliquots of 300 μL of nanovesicles were poured on a 3 mL syringe packed with Sephadex G-50, centrifuged for 5 min at
  • plates by covering them with 10% formaldehyde in PBS for 15 min at room temperature (RT). After removing the fixing buffer carefully, cells were covered with fresh ORO working solution (6 mL of 5 mg/mL ORO in isopropanol stock solution) and 4 mL of distilled water filtered through a 3 μm pore size filter
  • Figure 13. Briefly, HUVECs were seeded in EGM-2 medium at a density of 4 × 104/cm2 on ThinCert™ cell culture inserts (12 wells, 0.4 µm pore size PET membrane Greiner Bio-One GmbH, Austria) previously covered with 2% bovine skin gelatin type B and grown for 24 h. Also, 10.5 × 104/cm2 THP-1 macrophages per
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2024

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • prepared by the same method used in formulation F, except that the DCS nanocrystals were substituted with the commercial DCS powder. In vitro transdermal delivery study A Strat-M membrane (pore size = 450 nm, Merck KGaA) was mounted on a Franz diffusion cell (PermeGear). The receptor compartment contained
PDF
Album
Full Research Paper
Published 25 Apr 2024

Study of the reusability and stability of nylon nanofibres as an antibody immobilisation surface

  • Inés Peraile,
  • Matilde Gil-García,
  • Laura González-López,
  • Nushin A. Dabbagh-Escalante,
  • Juan C. Cabria-Ramos and
  • Paloma Lorenzo-Lozano

Beilstein J. Nanotechnol. 2024, 15, 83–94, doi:10.3762/bjnano.15.8

Graphical Abstract
  • improved by using another more accurate sensing system. (3) Because of the pore size of the nanofibres, they cannot be used for the detection of bacteria, rickettsiae, or fungi (i.e., they cannot be used for the detection of prokaryotic or eukaryotic cells). They could, therefore, be used for the
PDF
Album
Full Research Paper
Published 15 Jan 2024

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • , including pore size manipulation, post-synthetic modifications, and composite formation. Finally, the extant challenges and anticipated prospects pertaining to the development of MOF-based nanomaterials for CO2 storage are described. Keywords: CO2 storage; metal-organic frameworks; nanomaterials; open
  • metal sites; pore size; Introduction One of the major issues associated with CO2 emissions is the heightened risk of climate change faced by our planet. Furthermore, there is an alarming issue of elevated levels of air pollution affecting human population [1]. One potential solution to address this
  • frameworks (MOFs) [11][12][13]. Notably, MOFs constructed from metal ions and organic linkers are expected to be alternative materials to the organic alcohol amines in CCS [14]. These nanosized materials posess unique properties such as ultrahigh surface area, tunable pore size, open metal sites (OMSs), and
PDF
Album
Review
Published 20 Sep 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • h at 523 K and 5 × 10−5 bar. The desorption branch of the N2 isotherm was used to determine the pore size distribution using the BJH method. The surface area was determined using the BET method. The micropores volumes were determined by applying t-plot and DR methods. X-ray absorption spectroscopy X
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • explained by the nonlinearity of the entropy term in the Gibbs free energy. 3.2 Pore size The fabrication of nanoscale porous networks has attracted attention owing to their ability to accommodate guest molecules in the confined pores. Modification of the alkyl chain length facilitated the tuning of the
  • pore size of the honeycomb structure. Dehydrobenzo[12]annulene (DBA, Scheme 4a) derivatives formed honeycomb structures in which the triangular DBA core was located at the vertices of the hexagon (Figure 6a,b) [89][90]. The honeycomb structure was highly stabilized by interdigitation of the four alkyl
  • chains that followed the HOPG lattice directions. The pore size enlarged from 1.6 to 4.7 nm in accordance with the alkyl chain length ranging from C6 to C20, respectively [90]. In addition to the honeycomb structure, DBA formed wavy structures without pores [91], where two of the six alkoxy chains
PDF
Album
Review
Published 23 Aug 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • lanthanides, have been thoroughly researched to address these drawbacks. In recent years, theoretical and applied research has focused heavily on luminescent MOFs as an alternative sensing material for fluorescent sensors. These MOFs have an easy-to-functionalize surface, a tunable pore size, intrinsic
PDF
Album
Review
Published 01 Jun 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • was then vacuum-filtered through alumina membranes (20 nm pore size), rinsed with IPA to remove residual NMP, and dried in a vacuum oven at 60 °C overnight. For samples 2 to 7, 3 mL of the dispersion was filtered, while for sample 1, ca. 30 mL was used to ensure adequate coverage of the membrane
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • 12 h at 180 °C. All chemicals were purchased and used as received. After synthesis, CQDs were filtered through polytetrafluoroethylene (PTFE) filters with 100 nm pore size. The prepared hydrophobic CQDs (toluene solution, 20 mL) were encapsulated into medical grade polyurethane (PU) films (dimension
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • g−1. The BJH adsorption pore size distribution indicated the dominance of mesopores (2 nm < d < 50 nm) with an average pore size of 4.42 nm. The N2 adsorption–desorption isotherm demonstrated a H4 type hysteresis curve indicating narrow slit-like pores in the as-synthesized sample. In comparison
  • , the HBN nanopowder had a BET surface area of 19.14 m2 g−1 with a pore volume of 0.0385 cm3 g−1. The BJH adsorption pore size distribution indicated an average pore size of 3.63 nm with dominance of mesopores (1.54 nm < d < 60 nm). The BJH adsorption pore size distribution along with the BET adsorption
PDF
Album
Full Research Paper
Published 22 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • clusters and organic ligands via coordination bonds [89][90][91][92]. The variety of combinations between metal ions and organic linkers or structural motifs allows for tunable pore size/shape and adjustable surface functionality [93][94]. These structural characteristics make MOFs one of the most ideal
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • -selective membrane (pore size diameter ≈ 58.7 nm). (f) Voc and Isc as functions of the time. Figure 9a–f were reproduced from [88], Zheng, S. et al., “Continuous Energy Harvesting from Ubiquitous Humidity Gradients using Liquid-Infused Nanofluidics”, Adv. Mater., with permission from John Wiley and Sons
PDF
Album
Review
Published 25 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • achieve higher osteogenic properties, scaffolds composed of nanocopper–zinc integrated with nanohydroxyapatite, gelatin, and chitosan were developed by the freeze-drying method. The scaffolds were developed with a diameter of 8 mm and thickness of 2.5 mm. The porosity ranges from 97.8 to 99.5% with a pore
  • size of 113 to 143 µm. In vitro cell interaction investigations with mouse embryonic fibroblasts demonstrate the osteogenic capabilities of the scaffolds [107]. In another study, Tripathi et al. (2012) investigated the osteogenic properties of the scaffolding system composed of nanocopper–zinc
PDF
Review
Published 29 Sep 2022
Other Beilstein-Institut Open Science Activities