Search results

Search for "proteins" in Full Text gives 392 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • deoxyribonucleic acid (DNA) [1]. Water molecules and their hydrogen bonding network function as lubricants for biomolecular dynamics. Recent scientific works have analyzed the important role of hydration shells on DNA, proteins, and phospholipid membranes [2][3][4]. The first hydration shell (about 3.5 Å) at the
  • shows SEM images of surfaces at the fracture of a GO-SG-ZH/PLA film generated by the tensile measurement. Conclusion Supramolecular graphene-based hydrogels are bioinspired structures which are biomimetic to natural hydration structures of cellular membranes, proteins, and other biomolecules. While
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Serum heat inactivation diminishes ApoE-mediated uptake of D-Lin-MC3-DMA lipid nanoparticles

  • Demian van Straten,
  • Luuk van de Schepop,
  • Rowan Frunt,
  • Pieter Vader and
  • Raymond M. Schiffelers

Beilstein J. Nanotechnol. 2025, 16, 740–748, doi:10.3762/bjnano.16.57

Graphical Abstract
  • inherent limitations of different classes of therapeutics, ranging from small molecule drugs, to biologicals such as proteins and nucleic acids. Nanoparticles can enhance the solubility and stability of their payload, prolong its circulation time, and improve its biodistribution to increase their safety
  • proteins, forms on its surface. This so-called protein corona significantly affects the physicochemical properties of the nanoparticle, such as size, charge and stability [2][3][4][5]. In turn, the composition of the protein corona is influenced by the physicochemical properties of the pristine
  • the same batch. Heat treatment of FCS reduced LNP uptake over threefold (Figure 1C). Together, these results suggest that, in this particular experimental setup, the type or the condition of proteins present in the FCS dictate cell interactions rather than the total amount of protein present in the
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • representative micrographs at low magnification. After examining cellular adhesion, we investigated whether FLG–TA affects the chromatin structure. DNA comes together with histone proteins to create chromatin, which is essential for processes such as replication, transcription, and repair [41][42][43]. The level
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • . Plasma was centrifuged at 2500 rpm for 15 min. Acetonitrile (1 mL) was added to plasma samples to precipitate proteins. Samples were vortexed for 30 s and centrifuged for 10 min at 13,500 rpm. The sampling procedure was similar to that of Erdoğar and colleagues [16]. The supernatant was isolated, and the
PDF
Album
Full Research Paper
Published 15 May 2025

A formulation containing Cymbopogon flexuosus essential oil: improvement of biochemical parameters and oxidative stress in diabetic rats

  • Ailton Santos Sena-Júnior,
  • Cleverton Nascimento Santana Andrade,
  • Pedro Henrique Macedo Moura,
  • Jocsã Hémany Cândido dos Santos,
  • Cauãn Torres Trancoso,
  • Eloia Emanuelly Dias Silva,
  • Deise Maria Rego Rodrigues Silva,
  • Ênio Pereira Telles,
  • Luiz André Santos Silva,
  • Isabella Lima Dantas Teles,
  • Sara Fernanda Mota de Almeida,
  • Daniel Alves de Souza,
  • Jileno Ferreira Santos,
  • Felipe José Aidar Martins,
  • Ana Mara de Oliveira e Silva,
  • Sandra Lauton-Santos,
  • Guilherme Rodolfo Souza de Araujo,
  • Cristiane Bani Correa,
  • Rogéria De Souza Nunes,
  • Lysandro Pinto Borges and
  • Ana Amélia Moreira Lira

Beilstein J. Nanotechnol. 2025, 16, 617–636, doi:10.3762/bjnano.16.48

Graphical Abstract
  • , ALT, alkaline phosphatase, and gamma-glutamyl transferase as shown in the diabetic control groups compared to the normal control group. In a study by Garba et al. [42], it was observed that liver glycogen content and serum levels of AST and ALP decreased significantly, while serum ALT, total proteins
PDF
Album
Supp Info
Full Research Paper
Published 07 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • substitute applications [13]. Various materials including natural polymers, synthetic polymers, or composites have been used to create electrospun membranes. This review focuses on silk fibroin/polyurethan-based electrospun membranes. Silk fibroin (SF) is a naturally occurring biomaterial made of proteins
  • remodeling of tissues or maturation [32]. Hemostasis After an injury, the first response is contraction blood vessels and coagulation of blood to reduce blood and fluid loss. Platelets play a key role in hemostasis function. Platelet receptors interact with ECM proteins, such as collagen, fibronectin, and
  • [73]. This silk comprises two proteins called fibroin and sericin. Fibroin is present in the thread core and is responsible for approximately 70% of the total thread weight, while sericin is present on the outside and accounts for roughly 30% of the total silk thread weight [74]. The sericin protein
PDF
Album
Review
Published 24 Apr 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • in the accumulation of reactive oxygen species (ROS) and reactive nitrogen species, contributing to oxidative stress within the cell [16]. The increase in cytosolic Ca2+ also promotes the phosphorylation of ATP proteins, which, in turn, leads to the enhanced production of Aβ42 and AβOs, creating a
  • research into traditional therapeutic approaches, such as small molecules/compounds, immunotherapy, peptidomimetics, and chaperon proteins, as outlined in Table 1, continues to be a critical part of the effort to tackle AD. These conventional strategies, which target different aspects of AβO formation and
  • therapeutic applications. CNMs can be categorized into three primary forms, namely, zero-dimensional fullerenes (e.g., C60), one-dimensional carbon nanotubes (CNTs), and two-dimensional graphene. Each of these NMs possesses distinct attributes that facilitate their engagement with proteins and peptides
PDF
Album
Review
Published 22 Apr 2025

Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus

  • Carlos Enrique Torres-Méndez,
  • Sharmilee Nandi,
  • Klara Martinovic,
  • Patrizia Kühne,
  • Yifan Liu,
  • Sam Taylor,
  • Maria Lysandrou,
  • Maria Ines Berrojo Romeyro Mascarenhas,
  • Viktoria Langwallner,
  • Javier Enrique Sebastián Alonso,
  • Ivana Jovanovic,
  • Maike Lüftner,
  • Georgia-Vasiliki Gkountana,
  • David Bern,
  • Abdul-Raouf Atif,
  • Ehsan Manouchehri Doulabi,
  • Gemma Mestres and
  • Masood Kamali-Moghaddam

Beilstein J. Nanotechnol. 2025, 16, 540–550, doi:10.3762/bjnano.16.42

Graphical Abstract
  • ][12][13][14][15][16][17][18][19][20], while others have focused on N1 protein [8][21], both H1 and N1 proteins [22], nucleoprotein [23][24][25], both H1 and nucleoprotein [26], nucleic acids [27][28][29], matrix protein [30], and serum amyloid A biomarker [31]. Biosensing technologies are constantly
  • electron charge transfer at the surface of the electrode. To the best of our knowledge, this is the first time that the charge transfer enhancement with 4-ATP, a small organic molecule with delocalized π-electron system, has been employed to improve the sensitivity of electrochemical biosensing of proteins
  • electrochemical biosensing of proteins. Covalent oriented immobilization of monoclonal antibodies (mAbs) was achieved through amide bond formation between terminal carboxylate moieties of mAbs and surface amine groups of the 4-ATP/AuNFs/CSPE. Using this strategy, the fragment crystallizable region of the mAbs is
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
  • amounts of tissue that need to be targeted to achieve a therapeutic response, and the large degree of tissue-to-tissue variability [44][45][46][47]. Negatively charged ASOs including phosphorothioate backbone oligonucleotides (PS), gapmer ASOs, tcDNA, and LNAs can interact with plasma proteins, which
  • reduces their rate of renal clearance and influences their distribution to target tissues [48]. In contrast, neutral ASOs such as PMOs and PNAs present lower binding affinity to plasma proteins; therefore, these molecules exhibit shorter circulation lifetimes and lower tissue uptake [49]. After making
  • post-polymerisation modification for drug conjugation or additional targeting [59]. In addition to small molecules, drugs, and proteins, polymers play an essential role in the delivery of nucleic acids as they provide high stability and flexibility [60]. The delivery or nucleic acids can be improved
PDF
Album
Review
Published 27 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • can interact with the G-250 dye in the Bradford method, a commonly used method for protein quantification [36]. However, the interaction is not visually or optically measured without protein in a sample. In typical protein quantification methods, the interaction of the G-250 dye with proteins produces
PDF
Album
Full Research Paper
Published 20 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • .16.24 Abstract Autophagy is a highly regulated catabolic process by which unnecessary, dysfunctional, or damaged proteins and other cellular components are degraded and recycled to promote cellular differentiation, survival, and development. In response to endogenous or exogenous stresses, cancer cells
  • -damage response. GO–Chl causes loss of plasma membrane integrity, cell cycle arrest, and significant genotoxicity in A549 cells. Further, elevated expression of key autophagy proteins beclin-1, ATG-7, LC-3-I/II, and SQSTM1/p62 reveal that inhibition of autophagy plays a crucial role in regulating DDR
  • cancer cells, inducing a variety of DNA lesions. Cancer cells are equipped with complex molecular signaling pathways for recognition and repair of damaged DNA [4]. The activation of the DNA-damage response (DDR) machinery by phosphatidylinositol 3-kinase-related kinase (PIKKs) family proteins, such as
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • substances, resulting in color fading and the emergence of graphene-based filaments. Du et al. showed that berberine affects Streptococcus pyogenes by regulating proteins in the KEGG pathway, leading to the accumulation of reactive oxygen species (ROS) hindering the biosynthesis of DNA, proteins, and lipids
  • partial degradation of the proteins [33]. In this study, FE-SEM analysis further confirmed that one of the mechanisms by which BerNPs kill S. mutans involves the disruption and damage of the bacterial membrane. Inhibition of biofilm formation Streptococcus mutans is the primary cause of dental caries [34
  • , BerNPs demonstrated the ability to inhibit biofilm formation at various concentrations (Figure 5). The biofilm formation of S. mutans relies on the secretion of glycosyltransferase enzymes and several membrane-bound proteins [38]. SrtA, a surface protein involved in adhesion, biofilm formation, and
PDF
Album
Full Research Paper
Published 27 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • ]. nHA serves as a versatile agent in drug delivery [17], acts as a carrier for genes and proteins [18], and aids in immobilizing rhizobacteria for effective heavy metal removal [19]. In addition to its carrier capabilities, nHA exhibits exceptional attributes such as high biodegradability
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • cellular functions. Future developments may see the integration of photothermal nanomaterial therapies with viruses, receptors, antibodies, aptamers, peptides, multifunctional genes, self-assembled DNA structures, and proteins. Given the diversity and adaptability of nanomaterials, it is conceivable to
PDF
Album
Review
Published 17 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
  • decades of technological evolution, during which NCs have become indispensable components of drug delivery systems, known for their adaptability and efficiency [2]. The “family” of nanoparticles (NPs) includes a broad range of materials such as lipids, polymers, proteins, dextran, silica [3], and metals
  • opsonization in the bloodstream, mediated by opsonins that recognize plasma proteins (serum albumin, apolipoproteins, complement components, and immunoglobulins) adsorbed onto the surface of circulating NPs. This forms the so-called “protein corona” (PC), a layer of more than 300 proteins that effectively
  • masks the functionalization of groups coated on the NC surface. The formation of this corona acts as a clearance signal, prompting macrophages to recognize and engulf NCs [34]. The denser the proteins adsorbed onto the NC surface, the faster the uptake into the liver and spleen [35][36]. Several factors
PDF
Album
Review
Published 31 Jan 2025

Characterization of ZnO nanoparticles synthesized using probiotic Lactiplantibacillus plantarum GP258

  • Prashantkumar Siddappa Chakra,
  • Aishwarya Banakar,
  • Shriram Narayan Puranik,
  • Vishwas Kaveeshwar,
  • C. R. Ravikumar and
  • Devaraja Gayathri

Beilstein J. Nanotechnol. 2025, 16, 78–89, doi:10.3762/bjnano.16.8

Graphical Abstract
  • NPs can release Zn2+ ions, which interact with bacterial enzymes and proteins, further compromising cellular functions. The small size and high surface area of the nanoparticles enhance their interaction with bacterial cells, improving antibacterial efficacy. Significant inhibitory effects against S
PDF
Album
Full Research Paper
Published 30 Jan 2025

Instance maps as an organising concept for complex experimental workflows as demonstrated for (nano)material safety research

  • Benjamin Punz,
  • Maja Brajnik,
  • Joh Dokler,
  • Jaleesia D. Amos,
  • Litty Johnson,
  • Katie Reilly,
  • Anastasios G. Papadiamantis,
  • Amaia Green Etxabe,
  • Lee Walker,
  • Diego S. T. Martinez,
  • Steffi Friedrichs,
  • Klaus M. Weltring,
  • Nazende Günday-Türeli,
  • Claus Svendsen,
  • Christine Ogilvie Hendren,
  • Mark R. Wiesner,
  • Martin Himly,
  • Iseult Lynch and
  • Thomas E. Exner

Beilstein J. Nanotechnol. 2025, 16, 57–77, doi:10.3762/bjnano.16.7

Graphical Abstract
  • ’ nanotopography was realised through pore formation during synthesis using cetyltrimethylammonium bromide. The non-covalent conjugations between nanomaterials and proteins were quantitatively characterised, directly by gel electrophoresis and indirectly by quantifying the amount of unbound protein in the
  • investigate the influence of nanotopography on the protein binding capacity and its impact on epitope integrity. Johnson et al. [53] reported that structural alterations of proteins bound to nanomaterials impact the antigen-processing machinery in APCs and could, thus, impact the outcome in terms of
  • immunomodulation. Here, it should be emphasised that during immunotherapy against type-2 immune diseases, such as allergies, a shift towards regulatory T cell activation is envisioned. Finally, as depicted in section D, Hasenkopf et al. [48] tested the proteins’ individual binding efficiencies on differently
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • drug delivery has spurred extensive research into liposomal systems. These vesicles, with their inherent ability to encapsulate and protect a diverse range of therapeutic agents, including small molecule drugs, proteins, and genetic material such as DNA and RNA, hold significant promise for
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Attempts to preserve and visualize protein corona on the surface of biological nanoparticles in blood serum using photomodification

  • Julia E. Poletaeva,
  • Anastasiya V. Tupitsyna,
  • Alina E. Grigor’eva,
  • Ilya S. Dovydenko and
  • Elena I. Ryabchikova

Beilstein J. Nanotechnol. 2024, 15, 1654–1666, doi:10.3762/bjnano.15.130

Graphical Abstract
  • photomodification to obtain NPs bearing a full protein corona on the lipid surface, the proteins of which could be identified by mass analysis [23]. Hossein Mohammad-Beigi and colleagues published another approach in 2020 [7]. They used methods of click chemistry to fix proteins on the surface of silica and
  • polystyrene NPs and thereby obtained the full corona. In principle, the effect of click chemistry and photomodification is the same. Both fix the full corona; however, the methods differ in details. When click chemistry is performed, soft corona proteins bind only to pre-modified hard corona proteins, whereas
  • photomodification additionally captures “free” soft corona proteins that are not bound to the hard corona. In this way, photomodification provides a more complete representation of soft corona proteins, which are then identified by mass analysis methods. The main component in the photomodification process is a
PDF
Album
Full Research Paper
Published 30 Dec 2024

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • these carriers are improved [19][21][22][23][24][25]. Various cellular components such as extracellular vesicles, leukocyte and red blood cell membranes are beneficial for developing bioinspired devices. Specific targets, including peptides, aptamers, proteins, and viral capsids, may also be utilized in
  • the production of nature-inspired synthetics as demonstrated in Figure 2B [22][23][24][25][26]. Indeed, the co-incubation of nanoparticles with cellular components creates an environment conducive to the absorption of proteins by the nanoparticles, thereby facilitating the connection of these
  • , anchored proteins, fatty acids, and other compounds present in these membranes not only confer cell-like properties to the carriers but also prevent immune recognition, extend circulation time, and enhance target mimicry, such as that of cancer cells [33]. Coating particles with membranes has been well
PDF
Album
Perspective
Published 16 Dec 2024

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • the main chains (cellulose fibrils) and 18.4 nm (range 14.1–23.8 nm) for the cross-links (pectin and hemicellulose chains) [7]. One difference can be seen when comparing both methods. In our studies, we observed small granules covering the fibrils. We supposed that they are proteins that are natural
PDF
Album
Review
Published 13 Dec 2024

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • increase in total protein content. Increases compared to almost normal albumin levels are characteristic in pathological conditions when the total protein fraction increases due to acute phase proteins. Increases in total protein content may also be due to the release of ALT, AST, ALP, and GGT enzymes into
  • state. Based on the results showing a hypolipoproteinemic effect (Table 1), we hypothesize that one of the possible intracellular molecular targets of such action of Fe3O4 NPs and its composites are proteins of the SIRT family, regulating the activity of PPARγ, PGC-1α, NF-kB, FOXO, p53, and others, as
  • xenobiotics to enhance the expression of transport proteins during prolonged exposure, correlating with studies by Belinskaia and colleagues [60]. The combined effect of Fe3O4 NPs with 70% ethanol extract of T. polium and its component rutin leads to suppression of GPx activity, which may be associated either
PDF
Album
Full Research Paper
Published 11 Dec 2024

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • conductivity, and potent catalytic activity, make them ideal candidates for environmental monitoring and remediation [3]. Modifying silver nanoparticles with various biological molecules, peptides, proteins, and enzymes has further enhanced their functionality, stability, and selectivity towards specific
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti

  • Matheus Alves Siqueira de Assunção,
  • Douglas Dourado,
  • Daiane Rodrigues dos Santos,
  • Gabriel Bezerra Faierstein,
  • Mara Elga Medeiros Braga,
  • Severino Alves Junior,
  • Rosângela Maria Rodrigues Barbosa,
  • Herminio José Cipriano de Sousa and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 1566–1575, doi:10.3762/bjnano.15.123

Graphical Abstract
  • vectors are nanomaterials or nanomaterial-based formulations as so-called nanopesticides, providing new, modern, and low-cost formulations [9][10] with the ability to penetrate through the exoskeleton into mosquito cells, causing mortality after binding to proteins or DNA [11]. Nanomaterials provide
  • of silver nanoparticles (yeasts, plants, fungi, algae, and bacteria), which are capable of reducing inorganic metal ions to metallic nanoparticles quickly [40][41]. Among these, algae have been highlighted because of their immense bioactive potential of compounds such as accessory pigments, proteins
PDF
Album
Review
Published 04 Dec 2024
Other Beilstein-Institut Open Science Activities