Search results

Search for "surface" in Full Text gives 2293 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
  • coupling between Fe ions, (iii) the analysis of interactions between the magnetic core and the sucrose shell and their impact on core surface magnetic moments, (iv) the impact of the core surface and nonmagnetic additives on the saturation magnetization of the investigated compound [19], and (v) the
  • microcapsules. The resolution of the SEM technique is insufficient to recognize iron sucrose nanoparticles. Therefore, it is impossible to determine whether calcium alginate uniformly covers all iron sucrose nanoparticles or if some nanoparticles are on the microcapsule surface. Furthermore, it remains unclear
  • the microcapsule as a magnetic system, it is expected that the sucrose shell will prevent or significantly diminish interactions between nanoparticles, also probably modifies the surface state of the core. To understand the low-temperature magnetic state of the FS0 sample, the zero field cooled
PDF
Album
Full Research Paper
Published 02 Jun 2025

Thickness dependent oxidation in CrCl3: a scanning X-ray photoemission and Kelvin probe microscopies study

  • Shafaq Kazim,
  • Rahul Parmar,
  • Maryam Azizinia,
  • Matteo Amati,
  • Muhammad Rauf,
  • Andrea Di Cicco,
  • Seyed Javid Rezvani,
  • Dario Mastrippolito,
  • Luca Ottaviano,
  • Tomasz Klimczuk,
  • Luca Gregoratti and
  • Roberto Gunnella

Beilstein J. Nanotechnol. 2025, 16, 749–761, doi:10.3762/bjnano.16.58

Graphical Abstract
  • evaluated the surface modification reaction and the surface potential. Our results established the correlations of the two latter properties with the thickness of flakes, observing a natural tendency to preserve their characteristic when the flakes have significantly less thickness. This is in contrast to
  • investigates interfaces made by dry transfer of CrCl3 flakes in an atmospheric environment. Cl vacancies and the formation of O/CrCl3 are induced, serving as dissociation centers that facilitate the migration of Cl vacancies between the top and bottom surfaces. By manipulating 2D atomic layers via surface
  • oxidation or the introduction of surface vacancies, a novel and versatile approach is unveiled for the development of low-dimensional multifunctional nanodevices. Keywords: chemical mapping; CrX3; Kelvin probe force microscopy; mechanical exfoliation; scanning photoelectron microscopy (SPEM); two
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2025

Serum heat inactivation diminishes ApoE-mediated uptake of D-Lin-MC3-DMA lipid nanoparticles

  • Demian van Straten,
  • Luuk van de Schepop,
  • Rowan Frunt,
  • Pieter Vader and
  • Raymond M. Schiffelers

Beilstein J. Nanotechnol. 2025, 16, 740–748, doi:10.3762/bjnano.16.57

Graphical Abstract
  • surface of nanoparticles after administration has garnered substantial attention due to the significant effects it has on their performance. Lipid nanoparticles (LNPs) depend on protein corona formation to mediate their targeting. Such protein–nanoparticle interactions are often initially studied using in
  • proteins, forms on its surface. This so-called protein corona significantly affects the physicochemical properties of the nanoparticle, such as size, charge and stability [2][3][4][5]. In turn, the composition of the protein corona is influenced by the physicochemical properties of the pristine
  • intravenously after which they are dependent on the adsorption of the plasma protein apolipoprotein E (ApoE) to their surface to efficiently target LDL-receptor expressing cells in the liver and deliver the siRNA cargo [25][26]. As the protein corona seems to play a pivotal role in LNP tissue distribution and
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2025

Synthesis of a multicomponent cellulose-based adsorbent for tetracycline removal from aquaculture water

  • Uyen Bao Tran,
  • Ngoc Thanh Vo-Tran,
  • Khai The Truong,
  • Dat Anh Nguyen,
  • Quang Nhat Tran,
  • Huu-Quang Nguyen,
  • Jaebeom Lee and
  • Hai Son Truong-Lam

Beilstein J. Nanotechnol. 2025, 16, 728–739, doi:10.3762/bjnano.16.56

Graphical Abstract
  • -based multicomponent adsorbent material (PGC) synthesized from sodium carboxymethyl cellulose and investigated factors influencing its TC adsorption capacity. The synthesis process was optimized using parameters derived from the response surface methodology. The surface and structural properties of PGC
  • were characterized, and the TC adsorption efficiency of PGC was assessed using high-performance liquid chromatography–mass spectroscopy (HPLC-MS). Elemental analysis of PGC identified four key mechanisms governing its endothermic TC adsorption mechanism: surface complexation, electrostatic interactions
  • , hydrogen bonding, and CH–π interactions, with surface complexation between Ca2+ and TCs being dominant. Batch adsorption experiments conducted to examine the factors influencing adsorption capacity revealed that PGC achieved up to 70% TC removal efficiency at an adsorbent dosage of 40 mg and an initial TC
PDF
Album
Full Research Paper
Published 27 May 2025

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • particle surface and quantified regarding feedstock mass concentration and nutraceutical type. Cytotoxicity in HepG2 cancer cells was significantly reduced in cells treated with laser-processed curcumin in comparison to unirradiated curcumin controls, and antioxidant effects were proven, ensuring high
  • goes along with an elevated specific surface area that improves solubility and bioavailability of these nutraceuticals. Consequently, the amount of degradation products per generated surface area within one laser passage is a particularly interesting assessment criterion for process efficiency
  • . Moreover, the created surface area is also a descriptor highly relevant for application (as the solubility of hydrophobic particle dispersions in water is proportional to the surface [67][68]). For simplified calculations of the total surface created by LFL, we assumed all particles to be ideal spheres
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • the Se 3d core level lines. One of the components was found to correspond to Se in TiSe2; the second component, which had no known analogues, was attributed to structural fragments of CrSe2. This confirmation was obtained directly by SPEM [13]. In the cleaved surface of the Cr0.78Ti0.36Se2 single
  • promising, their performance is often limited by surface properties of the III–V semiconductor material, which furthermore can vary for individual nanowires. This includes native oxides on semiconductor surfaces and their possible removal, surface passivation, and interface defects [27]. Therefore, in-depth
  • surface characterization of individual nanowires is urgently needed. This task is difficult for many conventional surface characterization techniques due to the nanowire geometry, and it becomes even more challenging in the case of nanowire heterostructure devices, where operando characterization of a
PDF
Album
Review
Published 23 May 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • , atomic force microscopy, and transmission electron microscopy analyses revealed that the TaN films exhibit excellent crystallinity and smooth surface morphology, when deposited at optimal temperatures of 750 and 850 °C. The films exhibit superconducting transition temperatures (Tc) ranging from 5.0 to
  • . Atomic force microscopy (AFM, XE-70 Park Systems) in contact mode was used to study the surface morphology of the films. The synthesis protocol used in this study was modified from the work reported by Quintanar-Zamora et al. [15] by varying the substrate temperature and the nitrogen pressure. Results
  • -vacuum conditions, a small residual oxygen concentration inevitably remains within the deposition chamber. At elevated temperatures, the reactivity of these residual oxygen molecules increases, facilitating their adsorption onto the growing film surface. However, an increase in N2 pressure can lead to
PDF
Album
Full Research Paper
Published 22 May 2025

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • force microscopy (KPFM) is an important tool for conducting such studies, enabling the measurement of the perovskite’s surface potential by monitoring the electrostatic force between the surface and a conductive probe (See Supporting Information File 1, Section 1). This measurement can provide insights
  • open circuit, to accumulate, leading to forward biasing of the solar cell. Therefore, the surface potential profile of a forward biased device can be correlated with the potential distribution under illumination and open circuit [43][44][45] (See Supporting Information File 1, Section 2). By forward
  • 1), with voltage drops and rises being apparent because of the band bending introduced by mobile ions or surface defect states caused by the cleaving. Furthermore, the CPD decrease (black curves) on the HTL side relative to the perovskite when BCF is included in both cases reveals the p-doping of
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • synthesized through a straightforward, bio-based methodology. Physicochemical characterizations elucidated the structural and morphological attributes of the biocomposite. By incorporating antioxidant TA molecules onto the FLG surface, the biocomposite dynamically mitigated reactive oxygen species
  • out for their potential in dentistry due to their high specific surface area, mechanical strength and adaptability for biological and chemical modifications [4][5]. For instance, a previous study demonstrated that incorporating 2% (w/w) graphene oxide into a resin-modified glass ionomer cement
  • significantly enhanced the flexural strength of the material, thereby improving its overall mechanical properties [6]. Additionally, another study investigated the effects of adding graphene oxide nanoplatelets (GONPs) to Portland cement. It was shown that the addition of 1 wt % GONPs improved surface
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • β-CD concentration converted crystalline entrapped APT into an amorphous state, decreasing surface tension and promoting the solubility profile [14]. A similar behavior was observed for the poloxamer 407 samples with solubilities in the order of APT-PX-NP5 > APT-PX-NP6 > APT-PX-NP7 > APT-PX-NP8 due
  • , 141.3 ± 0.62, 121.1 ± 0.72, 257.6 ± 0.37, 229.5 ± 0.94, 207.2 ± 0.63, and 191.0 ± 0.57 nm, respectively (Table 1). An exemplary measurement for APT-CD-NP4 is given in Figure 2. The SLNs with lower particle size provide a large surface area, which increases drug release and enhances drug absorption by
  • dispersion. SEM studies Scanning electron micrographs of APT-CD-NP4 and APT-PX-NP8 shown in Figure 3 illustrate that polymeric content was deposited on the SLN surface because of organic solvents. After evaporation of the organic solvent, colloidal particles are closely packed. Dispersions in organic
PDF
Album
Full Research Paper
Published 15 May 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • ][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73]. Compared to optical ellipsometry or reflectance spectroscopy, SCM and SCFM can map surface properties such as film thickness [35][39] and dielectric constants [35][74], with superior spatial resolution. However, in particular
  • , lever, and some additional stray capacitance caused by the signal cables in the AFM head (Figure 3). In the case of a dielectric sample, the tip-, apex- and lever-surface capacitors are connected in series with capacitors formed by the sample dielectric layer. The exact configuration for these
  • locations on the microcapacitor sample. The first spectrum was recorded on one of the microcapacitors (C3, see Figure 2). Then, we measured in one of the FIB-etched trenches around the capacitors. Here, we assume that the bare silicon surface is covered by a thin native oxide layer (Si). Last, we measured
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

Focused ion and electron beams for synthesis and characterization of nanomaterials

  • Aleksandra Szkudlarek

Beilstein J. Nanotechnol. 2025, 16, 613–616, doi:10.3762/bjnano.16.47

Graphical Abstract
  • -phase investigations of molecular fragmentation by electron beams may not fully predict the behavior of molecules when adsorbed on a surface. This highlights the importance of comparing gas-phase fragmentation results with FEBIP processes. In this issue, the novel iron precursor (i.e., iron
PDF
Album
Editorial
Published 02 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • . The properties of nanofibers such as their high specific surface area, large surface-to-volume ratio, large length-to-diameter ratio, porous membrane structure, and their ability to mimic the extra-cellular matrix (ECM) of natural tissues make them a suitable material for wound dressing and skin
  • through a capillary, and a high voltage is applied to charge the solution’s particles, which produces an attractive force [54]. When the solution’s surface tension is overcome at a critical voltage, a jet shoots out of the capillary’s tip toward a grounded collector (Figure 2A) [55]. The morphology of
  • , environmental engineering, and green chemistry [59]. This method facilitates the creation of highly porous 3D structures with an extensive surface area and desirable chemical and physical properties, making the resulting nanofibers ideal for applications such as biosensors, antimicrobial surfaces, scaffolds
PDF
Album
Review
Published 24 Apr 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • . discussed several applications of CNFs. Thin CNFs have a large surface area and are used for adsorptive hydrogen storage. Also, CNFs are used as electrode materials in supercapacitors. They can also be used for water purification and carbon capture and storage [20]. LPG gas contains a flammable mixture of
  • CNF, and growth is seen on the beads. The growth rate is higher at Φ = 1.8 than at Φ =1.60. Figure 6 shows zirconia beads before and after synthesis. Before synthesis, the impregnated zirconia beads were gray. They turned black after the synthesis because of a layer of CNF deposited on the surface of
  • concentrations, the amount of available carbon is higher, which provides more carbon atoms that can interact with the catalyst’s surface, enhancing the ability of the catalyst to decompose the carbon source to grow CNF structures. The histogram in Figure 8b shows the diameter distribution of CNFs in a more
PDF
Album
Full Research Paper
Published 23 Apr 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • detection and treatment of AβOs in AD. Because of their nanoscale size, NMs can interact with biological systems in ways that traditional treatments cannot. Their unique properties such as high surface area, quantum effects, and specific physicochemical traits make them ideal for developing advanced
  • ) enhance imaging sensitivity because of their distinct electrical or photoluminescent properties. For treatment, NPs can serve as drug carriers, improving delivery across the BBB and reducing side effects. Their large surface area allows for controlled drug release and targeted therapy, enhancing treatment
  • effectively recognize all oligomeric forms, complicating the development of broad-spectrum therapies. Unlike larger aggregates, which may present multiple binding sites, AβOs have fewer defined surface characteristics that can be targeted. AβOs can interconvert between different oligomeric states and may also
PDF
Album
Review
Published 22 Apr 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • Arkaprava Das Marcin Zajac Carla Bittencourt Chimie des Interaction Plasma surface, Research Institute for Materials Science and Engineering, Université of Mons, 7000 Mons, Belgium SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 30-392 Krakow, Poland 10.3762/bjnano.16.43
  • evidence of changes in surface chemical states due to irradiation. In summary, we elucidate the underlying mechanism responsible for the retrieval of the B1 phase from the transformed B2 phase following O ion irradiation using core-level spectroscopy. While the B1 to B2 phase transformation is reported to
  • evident; rather, distinct void regions are observed. Given that CdO has a melting temperature of ≈1000 °C, a portion of CdO may have melted during the annealing process at 900 °C, subsequently condensing in energetically favorable sites at the film surface. The whitish regions in the CZ900_Pris thin film
PDF
Album
Full Research Paper
Published 17 Apr 2025

Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus

  • Carlos Enrique Torres-Méndez,
  • Sharmilee Nandi,
  • Klara Martinovic,
  • Patrizia Kühne,
  • Yifan Liu,
  • Sam Taylor,
  • Maria Lysandrou,
  • Maria Ines Berrojo Romeyro Mascarenhas,
  • Viktoria Langwallner,
  • Javier Enrique Sebastián Alonso,
  • Ivana Jovanovic,
  • Maike Lüftner,
  • Georgia-Vasiliki Gkountana,
  • David Bern,
  • Abdul-Raouf Atif,
  • Ehsan Manouchehri Doulabi,
  • Gemma Mestres and
  • Masood Kamali-Moghaddam

Beilstein J. Nanotechnol. 2025, 16, 540–550, doi:10.3762/bjnano.16.42

Graphical Abstract
  • .16.42 Abstract An electrochemical biosensor based on modified carbon screen-printed electrodes was developed for the detection of hemagglutinin of influenza A H1N1 virus (H1). Gold nanoflowers were electrodeposited on the electrode to increase conductivity and surface area. The electrochemical signal
  • was amplified by functionalization of the gold nanoflowers with 4-aminothiophenol, which resulted in a 100-fold decrease of the charge transfer resistance due to a tunneling effect. Subsequently, monoclonal antibodies against H1 were immobilized on the surface via covalent amide bond formation
  • into four groups, namely, influenza A, B, C, and D viruses. The antigenic features of the hemagglutinin (HA) and neuraminidase (NA) glycoproteins on the surface of influenza A viruses are used to further classify the virus into subtypes. Influenza A comprises 18 HA subtypes and 11 NA subtypes, of which
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • geometry is primarily due to surface diffusion processes and directional gas flux adsorption [44][45]. No halo region was observed. The volume growth rate was approximately 0.032 µm3·min−1 or 7.62 × 10−4 µm3·nC−1, with a vertical growth rate of 0.02 nm·s−1. For the STEM analysis, a square deposit was
  • with other fragments on the surface to form a nonvolatile matrix, or (iii) become embedded by newly arriving molecules from the gas phase [30]. A key factor for rapid desorption is the neutral charge of the generated fragments, which reduces the desorption energy. This applies to the isobutene
  • , acetaldehyde, and carbon oxide fragments, making the tbaoac ligand favorable for FEBID. Neglecting surface diffusion, the deposition rates νdep (in units of inverse time) and R (in units of distance over time) are given by [23] For the derivation of Equation 1 and for the numerical values used in the following
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

Zeolite materials with Ni and Co: synthesis and catalytic potential in the selective hydrogenation of citral

  • Inocente Rodríguez-Iznaga,
  • Yailen Costa Marrero,
  • Tania Farias Piñeira,
  • Céline Fontaine,
  • Lexane Paget,
  • Beatriz Concepción Rosabal,
  • Arbelio Penton Madrigal,
  • Vitalii Petranovskii and
  • Gwendoline Lafaye

Beilstein J. Nanotechnol. 2025, 16, 520–529, doi:10.3762/bjnano.16.40

Graphical Abstract
  • and temperature-programmed reduction. The materials prepared by IE had negligible chloride content (0.02–0.07%), and their specific surface areas (138–146 m2/g) were greater than those of the materials obtained by Imp (54–67 m2/g). The bimetallic systems exhibited enhanced reducibility of the Co2+ and
  • exhibited a higher surface area and pore volume, which can positively influence its potential application as a material to reduce greenhouse gas emissions. While most studies focus on monocationic exchange, multicationic exchange has raised significant interest. The synergy of properties in multicationic
  • ° in NiZImp, and at 28.5° in CoNiZImp. These peaks are attributed to impurities, such as mixed metal chloride salts, deposited on the zeolite surface. Specifically, the peaks at 16.1° and 39.3° correspond to both cobalt(II) chloride (CoCl2·2H2O, card 96-900-9874) and cobalt(II) hydroxychloride (Co2Cl
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

Water in nanoporous hexagonal boron nitride nanosheets: a first-principles study

  • Juliana A. Gonçalves,
  • Ronaldo J. C. Batista and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2025, 16, 510–519, doi:10.3762/bjnano.16.39

Graphical Abstract
  • hydrogen bonds with the N–H-terminated surface in rhombic pores, but not with the B–N-terminated surface, potentially leading to asymmetries in water flow through the pore area. Overall, our study provides valuable insights into the interaction between nanoporous h-BN membranes and water. Keywords: boron
  • as a molecular sieve [22][23][24][25]. Theoretical studies using molecular dynamics simulations analyzed the impact of the partial charge on the h-BN membrane surface on water molecules and salt ion transport [26]. They noted that the Coulomb interaction between water molecules/ions and the channels
  • type of pore can alter the hydrophobicity of h-BN and influence the flow of water through it. Moreover, the formation of a hydrogen bond with the N–H-terminated surface in rhombic pores, which is absent in interactions with the B–N-terminated surface, may lead to asymmetries in water flow through the
PDF
Album
Full Research Paper
Published 11 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • implanted with 1 × 1017 N2+·cm−2 at 30 keV using a current density of 4 µA·cm−2. Surface morphology and structural, optical, and electrical properties of the as-deposited and implanted Mo thin films have been systematically investigated. The crystallinity of Mo thin films is enhanced with increasing
  • material characteristics. Ion implantation is one of the most attractive techniques because it introduces considerable changes in the surface morphology and composition of the films [13][14]. The uses of implanted Mo thin films cover a broad range of applications including microelectronics and
  • accelerating voltage. At grazing incidence, the observed stress is either minimal or slightly tensile and is mostly unaffected by the accelerating voltage. Tripathi et al. [18] examined the temperature-dependent surface alterations in Mo films induced by He+ ion irradiation within the 773–1073 K range as a
PDF
Album
Full Research Paper
Published 01 Apr 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • the transformative impact of nanopatterning through low-energy inert ions. Keywords: optimization of ion current; surface topography; TEM; ultralow-energy ECR-based ion source; UV–vis spectroscopy; Introduction Ion sources serve as fundamental components in numerous scientific and industrial
  • applications and play a crucial role in generating charged particles. Various systems harness energetic ions for diverse purposes, spanning material science, high-energy physics, medical applications, and agricultural science [1][2][3][4][5]. Presently, energetic ions find application in various surface
  • not suitable for modern-day applications. In material science as well as surface science applications, the ion source should be mobile and adaptable to the vacuum system, having a longer lifetime. Further, the ion source should produce a relatively high beam current (i.e., capable of forming a high
PDF
Album
Full Research Paper
Published 31 Mar 2025

Impact of adsorbate–substrate interaction on nanostructured thin films growth during low-pressure condensation

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2025, 16, 473–483, doi:10.3762/bjnano.16.36

Graphical Abstract
  • formation. We simulate deposition on one- and multicomponent substrates with different strengths of adsorbate–substrate interactions. We will show that an increase in the strength of adsorbate–substrate interactions stimulates the formation of stable surface structures during deposition, which leads to an
  • increase in its coverage and the formation of a smaller number of adsorbate islands of larger size. At elevated adsorption rates, an increase in adsorbate–substrate interactions results in the transformation of the surface morphology and the formation of percolating adsorbate structures. Deposition onto
  • multicomponent substrates leads to the formation of a stationary surface morphology with an elevated number of adsorbate islands of smaller size, compared to one-component substrates. This study provides a deep insight into the peculiarities of nanostructured thin films’ growth in low-pressure systems with
PDF
Album
Full Research Paper
Published 28 Mar 2025

Effect of additives on the synthesis efficiency of nanoparticles by laser-induced reduction

  • Rikuto Kuroda,
  • Takahiro Nakamura,
  • Hideki Ina and
  • Shuhei Shibata

Beilstein J. Nanotechnol. 2025, 16, 464–472, doi:10.3762/bjnano.16.35

Graphical Abstract
  • the change in the absorption peak at 520 nm in the UV–vis absorption spectrum caused by the localized surface plasmon resonance (LSPR) of the Au nanoparticles as a function of the laser irradiation time. The black line shows the change in absorbance for the solution without IPA, and the red line shows
PDF
Album
Full Research Paper
Published 27 Mar 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
  • continue to the cellular nucleus. Certain cell surface receptors have demonstrated efficient binding to modified oligonucleotides, including integrins [50], toll-like receptors [51], and scavenger receptors [52]. However, the intracellular delivery to their specific site of action remains the major barrier
  • of PLG (DP = 20) in the development of a novel gene delivery system. In this study, surface-modified complexes were designed using PLG as a backbone to which polyethylene glycol (PEG, Mw = 5, 10, and 20 kDa) or epidermal growth factor (EGF) were conjugated [101]. This approach aimed to enhance the
  • ][106], architecture [107][108], degree of amine/phosphate complexation [109], and surface charge density of the polymers [110] strongly affect the transfection efficiency and toxicity of these cationic platforms. In this section of the review, we discuss the progress and challenges associated with the
PDF
Album
Review
Published 27 Mar 2025
Other Beilstein-Institut Open Science Activities