Search results

Search for "1,2,3-triazoles" in Full Text gives 82 result(s) in Beilstein Journal of Organic Chemistry.

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • other hand, 4-(α-tetrasubstituted)alkyl-1,2,3-triazoles 45 can be obtained by a two-step reaction of cyclohexanone, amines, silylacetylene, and aryl or alkyl azides in the presence of copper(II) catalysts (Scheme 34) [53]. In a first step, there is the formation of a propargylamine derivative XLIII
  • ]pyrazolo[4,3-f]quinolinones 42. Synthesis of spiroindoline-3,4’-pyrano[3,2-b]pyran-4-ones 43. Synthesis of N-(α-alkoxy)alkyl-1,2,3-triazoles 44. Synthesis of 4-(α-tetrasubstituted)alkyl-1,2,3-triazoles 45. Funding This work has been supported by Università degli Studi dell’Insubria and Università degli
PDF
Album
Review
Published 14 Jan 2025

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • auxiliary enhanced the arylation yields. Hypervalent iodonium salts are also useful to achieve the N-arylation of azoles. Prakash and co-workers applied iodonium salts 48 in the presence of a base to obtain regioselectively the N2-arylated products of 1,2,3-triazoles via ligand exchange followed by
PDF
Album
Review
Published 13 Nov 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • Sonogashira cyclization sequence from (triisopropylsilyl)butadiyne (118). Subsequent immediate desilylation and Click reaction with organoazides lead to 4-pyrazolyl-1,2,3-triazoles 119 (Scheme 42) [139]. Notably, in some examples, it was even possible to synthesize the organoazides in situ from alkyl halides
  • and cesium azide for the synthesis of compounds 120. The choice of the hydrazine substituent represents a limitation, as no aromatic substituents are tolerated in the strategy due to the reduced reactivity. However, due to the building blocks’ simplicity, various 4-pyrazolyl-1,2,3-triazoles are
PDF
Album
Review
Published 16 Aug 2024

Synthesis of 1,2,3-triazoles containing an allomaltol moiety from substituted pyrano[2,3-d]isoxazolones via base-promoted Boulton–Katritzky rearrangement

  • Constantine V. Milyutin,
  • Andrey N. Komogortsev and
  • Boris V. Lichitsky

Beilstein J. Org. Chem. 2024, 20, 1334–1340, doi:10.3762/bjoc.20.117

Graphical Abstract
  • ]isoxazolone derivatives with various hydrazines was studied. It was shown that the considered process includes formation of corresponding hydrazones followed by Boulton–Katritzky rearrangement. As a result, the general method for the synthesis of substituted 1,2,3-triazoles bearing an allomaltol fragment was
  • types of aforementioned structures were proved by X-ray analysis. Keywords: allomaltol; Boulton–Katritzky rearrangement; hydrazones; pyrano[2,3-d]isoxazolones; recyclization; 1,2,3-triazoles; Introduction The Boulton–Katritzky rearrangement (BKR) also known as mononuclear heterocyclic rearrangement is
  • participation of hydrazones attract special attention. This reaction is a general method for the preparation of 1,2,3-triazoles bearing various substituents at position 2. Wherein, depending on the type of starting heterocycles various functional derivatives are formed. So, the well-known Boulton–Katritzky
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2024

Mild and efficient synthesis and base-promoted rearrangement of novel isoxazolo[4,5-b]pyridines

  • Vladislav V. Nikol’skiy,
  • Mikhail E. Minyaev,
  • Maxim A. Bastrakov and
  • Alexey M. Starosotnikov

Beilstein J. Org. Chem. 2024, 20, 1069–1075, doi:10.3762/bjoc.20.94

Graphical Abstract
  • ]triazol-4-yl)pyridines was observed. Keywords: aromatic nitro compounds; Boulton–Katritzky rearrangement; isoxazolo[4,5-b]pyridines; nucleophilic substitution; 1,2,3-triazoles; Introduction Nitrogen heterocycles represent a very important class of organic compounds that has found application in various
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2024

Cycloaddition reactions of heterocyclic azides with 2-cyanoacetamidines as a new route to C,N-diheteroarylcarbamidines

  • Pavel S. Silaichev,
  • Tetyana V. Beryozkina,
  • Vsevolod V. Melekhin,
  • Valeriy O. Filimonov,
  • Andrey N. Maslivets,
  • Vladimir G. Ilkin,
  • Wim Dehaen and
  • Vasiliy A. Bakulev

Beilstein J. Org. Chem. 2024, 20, 17–24, doi:10.3762/bjoc.20.3

Graphical Abstract
  • the structure of the prepared compounds. To explain the outcome of the tandem reaction of 3,3-diaminoacrylonitriles to heterocyclic azides, a tentative mechanism for the formation of 1,2,3-triazoles 3 from acrylonitriles 1 and azides 2 is shown in Scheme 3. Firstly, treatment with a base, leads to
  • formal cycloaddition reaction of readily available heterocyclic azides with 3,3-diaminoacrylonitriles. The reaction represents a novel method for the preparation of 1,2,3-triazoles bearing an N-hetaryl amidine moiety and thus this reaction offers a novel method for the preparation of new types of 1
  • -substituted-1,2,3-triazoles, widening the synthetic applications of both azides and derivatives of acrylonitrile. Some of the prepared compounds exhibited a mild toxic effect on tumor cells in comparison with normal human embryonic cells. Experimental 3,3-Diaminoacrylonitriles 1b and 1f were synthesized from
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2024

Morpholine-mediated defluorinative cycloaddition of gem-difluoroalkenes and organic azides

  • Tzu-Yu Huang,
  • Mario Djugovski,
  • Sweta Adhikari,
  • Destinee L. Manning and
  • Sudeshna Roy

Beilstein J. Org. Chem. 2023, 19, 1545–1554, doi:10.3762/bjoc.19.111

Graphical Abstract
  • gem-difluoroalkenes with organic azides in morpholine as a solvent to construct fully decorated morpholine-substituted 1,2,3-triazoles. Mechanistic studies revealed the formation of an addition–elimination intermediate of morpholine and gem-difluoroalkenes prior to the triazolization reaction via two
  • plausible pathways. Attractive elements include the regioselective and straightforward direct synthesis of fully substituted 1,2,3-triazoles, which are otherwise difficult to access, from readily available starting materials. Keywords: [3 + 2] cycloaddition; defluorination; fully decorated 1,2,3-triazoles
  • -trisubstituted-1,2,3-triazoles, with a pendant morpholine at the C-4 position are formed with complete regiocontrol via β-fluoride elimination in an SNV-like transformation (Figure 1C). 1,2,3-Triazoles are a privileged scaffold in medicinal chemistry with a myriad of pharmacological activities against cancer [11
PDF
Album
Supp Info
Letter
Published 05 Oct 2023

One-pot nucleophilic substitution–double click reactions of biazides leading to functionalized bis(1,2,3-triazole) derivatives

  • Hans-Ulrich Reissig and
  • Fei Yu

Beilstein J. Org. Chem. 2023, 19, 1399–1407, doi:10.3762/bjoc.19.101

Graphical Abstract
  • nucleophilic substitutions employing sodium azide and organic substrates with potential leaving groups have been reported. The resulting organic azides were trapped in situ by a suitable alkyne to give the 1,2,3-triazoles [26][27][28][29][30][31][32][33][34][35][36]. Fairly recent review articles summarize
  • was also discussed in a review article [57] dealing with the various types of bis(1,2,3-triazoles). Since we were not interested in compounds such as 4 we did not further investigate details in order to optimize this process. Instead, we looked at the one-pot nucleophilic substitution to generate
  • led to the expected bis(1,2,3-triazoles) 20 or 21 in moderate or very good yield (Scheme 6). We cannot decide whether the lower yields in this series are caused by the unprotected hydroxy group of precursor 19 or the corresponding products. Although we did not isolate the conceivable mono-adducts we
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2023

A novel bis-triazole scaffold accessed via two tandem [3 + 2] cycloaddition events including an uncatalyzed, room temperature azide–alkyne click reaction

  • Ksenia Malkova,
  • Andrey Bubyrev,
  • Vasilisa Krivovicheva,
  • Dmitry Dar’in,
  • Alexander Bunev and
  • Mikhail Krasavin

Beilstein J. Org. Chem. 2022, 18, 1636–1641, doi:10.3762/bjoc.18.175

Graphical Abstract
  • proceeded further, in uncatalyzed fashion at room temperature and yielded, after intramolecular azide–alkyne click reaction novel, structurally intriguing bistriazoles. Keywords: α-acetyl-α-diazomethane sulfonamide; intramolecular click reaction; uncatalyzed; room temperature; 1,2,3-triazoles
  • ; Introduction 1,2,3-Triazoles are well-established heterocycles in drug discovery [1] and are even considered pharmacophores (i.e., structural motifs defining the compound’s biological activity profile) on their own [2]. Therefore, synthetic methods allowing to construct a 1,2,3-triazole heterocycle are a
  • valuable part of the drug discovery chemistry toolbox. For the same reason, development of new methods [3] to either build 1,2,3-triazoles de novo and/or incorporate them into polycyclic scaffolds is a worthy undertaking which can help discover biological activity associated with hitherto unattainable
PDF
Album
Supp Info
Letter
Published 02 Dec 2022

Scope of tetrazolo[1,5-a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof

  • Laura Holzhauer,
  • Chloé Liagre,
  • Olaf Fuhr,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2022, 18, 1088–1099, doi:10.3762/bjoc.18.111

Graphical Abstract
  • diversity of metal complexes incorporating 1,2,3-triazoles as ligands have been reported [16][17][18]. Triazole ligands with N-heterocycles such as Pyta (4-(2-pyridyl)-1,2,3-triazole) and related structures were employed to obtain novel metal complexes as catalysts [19][20] and imaging probes [21], as well
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2022

Synthesis of novel alkynyl imidazopyridinyl selenides: copper-catalyzed tandem selenation of selenium with 2-arylimidazo[1,2-a]pyridines and terminal alkynes

  • Mio Matsumura,
  • Kaho Tsukada,
  • Kiwa Sugimoto,
  • Yuki Murata and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 863–871, doi:10.3762/bjoc.18.87

Graphical Abstract
  • –Prakash reagent (TMSCF3) in the presence of Cs2CO3 as base in MeCN at 0 °C gave product 7 with a trifluoromethyl group. Stefani et al. reported the 1,3-dipolar azide–alkyne cycloaddition (AAC) of organotellanyl alkynes with organic azides in the presence of a copper reagent to form 5-organotellanyl-1,2,3
  • -triazoles [33]. Based on these findings, we examined the reaction of Cu-mediated AAC. The reaction of 4aa with benzyl azide in the presence of one equivalent of CuI and pentamethyldiethylenetriamine (PMDETA) in THF at 60 °C gave the desired 5-selanyl-1,2,3-triazole 8 in 72% yield. This reaction yielded a
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2022

Inductive heating and flow chemistry – a perfect synergy of emerging enabling technologies

  • Conrad Kuhwald,
  • Sibel Türkhan and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2022, 18, 688–706, doi:10.3762/bjoc.18.70

Graphical Abstract
  • coupled with in situ generation of the azide from the corresponding bromide. The 1,2,3-triazoles are formed in up to 99% yield and in less than 10 minutes residence time, which includes azide formation prior to the cycloaddition step. Interestingly, this process could not be successfully repeated under
PDF
Album
Review
Published 20 Jun 2022

Ligand-dependent stereoselective Suzuki–Miyaura cross-coupling reactions of β-enamido triflates

  • Tomáš Chvojka,
  • Athanasios Markos,
  • Svatava Voltrová,
  • Radek Pohl and
  • Petr Beier

Beilstein J. Org. Chem. 2021, 17, 2657–2662, doi:10.3762/bjoc.17.179

Graphical Abstract
  • isomerization of N-allyl amides [20], but still possess drawbacks, especially for stereoselective synthesis of tri- and tetrasubstituted enamides. Recently, we have reported a triflic acid-mediated reaction of N-fluoroalkyl-1,2,3-triazoles leading to (Z)-β-enamido triflates [21] and Lewis acid-mediated reaction
  • to (Z)-β-enamido fluorides [22] and halovinyl imidoyl halides [23]. In addition, Li and co-workers extended the scope of accessible (Z)-β-enamido triflates by denitrogenative reaction of N1-H-1,2,3-triazoles in the presence of acyl halides and sodium triflate [24]. These enamido triflates and halides
PDF
Album
Supp Info
Letter
Published 29 Oct 2021

Recent advances in organocatalytic asymmetric aza-Michael reactions of amines and amides

  • Pratibha Sharma,
  • Raakhi Gupta and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2021, 17, 2585–2610, doi:10.3762/bjoc.17.173

Graphical Abstract
  • -1,2,3-triazoles 35 in good yields (up to ≈72%) and excellent enantioselectivity (up to 99% ee) (Table 7) [41]. In an interesting study, Wu et al. screened a number of cinchona derivatives and squaramides for their relative catalytic efficacies for the enantioselective aza-Michael additions between
PDF
Album
Review
Published 18 Oct 2021

Synthesis and antimicrobial activity of 1H-1,2,3-triazole and carboxylate analogues of metronidazole

  • Satya Kumar Avula,
  • Syed Raza Shah,
  • Khdija Al-Hosni,
  • Muhammad U. Anwar,
  • Rene Csuk,
  • Biswanath Das and
  • Ahmed Al-Harrasi

Beilstein J. Org. Chem. 2021, 17, 2377–2384, doi:10.3762/bjoc.17.154

Graphical Abstract
  • this compounds are required. In this regard we suggested the modification of the alcohol tail of metronidazole by incorporating an N-heterocyclic moiety. Nitrogen-containing heterocycles play a vital role in agrochemicals and pharmaceuticals [3]. Among these heterocyclic systems, the 1H-1,2,3-triazoles
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2021

(Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: searching for novel compounds against chronic myeloid leukemia

  • Luiz Claudio Ferreira Pimentel,
  • Lucas Villas Boas Hoelz,
  • Henayle Fernandes Canzian,
  • Frederico Silva Castelo Branco,
  • Andressa Paula de Oliveira,
  • Vinicius Rangel Campos,
  • Floriano Paes Silva Júnior,
  • Rafael Ferreira Dantas,
  • Jackson Antônio Lamounier Camargos Resende,
  • Anna Claudia Cunha,
  • Nubia Boechat and
  • Mônica Macedo Bastos

Beilstein J. Org. Chem. 2021, 17, 2260–2269, doi:10.3762/bjoc.17.144

Graphical Abstract
  • analogs [12][13], in this work, we designed a series of imatinib 1,2,3-triazole analogs 1a,b and 2a–j (Figure 1). The 1,2,3-triazoles are heterocyclic compounds, consisting of a five-membered ring, containing two carbon atoms and three nitrogen atoms [14]. The application of click chemistry, a concept
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • synthesis of a wide variety of relevant 1,4,5-trisubstituted 1,2,3-triazole molecules are reported. The synthesis of this category of diverse fully functionalized 1,2,3-triazoles has become a necessary and unique research subject in modern synthetic organic key transformations in academia, pharmacy, and
  • industry. The current review aims to cover a wide literature survey of numerous synthetic strategies. Recent reports (2017–2021) in the field of 1,4,5-trisubstituted 1,2,3-triazoles are emphasized in this current review. Keywords: azides; Click reaction; [3 + 2]‐cycloaddition; fully functionalized 1,2,3
  • -triazoles; N-containing heterocycles; 1,4,5-trisubstituted 1,2,3-triazoles; Introduction A high number of N-heterocycles [1][2][3][4] are identified, and this number is increasing very quickly [5][6][7][8]. Among them, the small heterocyclic ring of the 1,2,3-triazole is present in a broad variety of
PDF
Album
Review
Published 13 Jul 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
PDF
Album
Review
Published 19 Apr 2021

Synthetic reactions driven by electron-donor–acceptor (EDA) complexes

  • Zhonglie Yang,
  • Yutong Liu,
  • Kun Cao,
  • Xiaobin Zhang,
  • Hezhong Jiang and
  • Jiahong Li

Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67

Graphical Abstract
  • with electron-rich as well as electron-poor arenes and heteroarenes. Subsequently, in order to prove the practicability of this approach, 1,2,3-triazoles were assembled by reaction of 157 with alkynes. In 2019, Bosque and Bach [41] reported that 3-acetoxyquinuclidine (q-OAc) could be utilized as an
PDF
Album
Review
Published 06 Apr 2021

Synthesis of β-triazolylenones via metal-free desulfonylative alkylation of N-tosyl-1,2,3-triazoles

  • Soumyaranjan Pati,
  • Renata G. Almeida,
  • Eufrânio N. da Silva Júnior and
  • Irishi N. N. Namboothiri

Beilstein J. Org. Chem. 2021, 17, 762–770, doi:10.3762/bjoc.17.66

Graphical Abstract
  • , MG, Brazil 10.3762/bjoc.17.66 Abstract Desulfonylative alkylation of N-tosyl-1,2,3-triazoles under metal-free conditions leading to β-triazolylenones is reported here. The present study encompasses the synthesis of triazoles with a new substitution pattern in a single step from cyclic 1,3-dicarbonyl
  • synthesis of new functionalized 1,2,3-triazoles. Keywords: azoles; cycloaddition; enones; heterocycles; 1,2,3-triazoles; Introduction 1,2,3-Triazoles are significant non-natural heterocyclic scaffolds with extensive applications in biochemistry, agrochemistry and materials chemistry [1][2][3][4][5]. This
  • azides and alkynes [14][15]. However, the formation of the nitrogenated azoles by the classical Huisgen methodology is slow due to its high activation energies and also lack of regiochemical control, in general, leading to a mixture of 1,4- and 1,5-regioisomers of 1,2,3-triazoles. Later, Sharpless and
PDF
Album
Supp Info
Letter
Published 31 Mar 2021

Synthesis of N-perfluoroalkyl-3,4-disubstituted pyrroles by rhodium-catalyzed transannulation of N-fluoroalkyl-1,2,3-triazoles with terminal alkynes

  • Olga Bakhanovich,
  • Viktor Khutorianskyi,
  • Vladimir Motornov and
  • Petr Beier

Beilstein J. Org. Chem. 2021, 17, 504–510, doi:10.3762/bjoc.17.44

Graphical Abstract
  • Prague, Czech Republic 10.3762/bjoc.17.44 Abstract The rhodium-catalyzed transannulation of N-perfluoroalkyl-1,2,3-triazoles with aromatic and aliphatic terminal alkynes under microwave heating conditions afforded N-perfluoroalkyl-3,4-disubstituted pyrroles (major products) and N-fluoroalkyl-2,4
  • of pyrroles to the 3,4-disubstituted derivatives is challenging because an electrophilic aromatic substitution of pyrroles or the metalation of N-substituted pyrroles and the subsequent reaction with electrophiles take place in position two of the ring [6][7]. Recently, N-sulfonyl-1,2,3-triazoles
  • -sulfonyl-1,2,3-triazoles (Scheme 1) [11][12][13][14][15][16][17]. We have recently reported that N-perfluoroalkyl-1,2,3-triazoles [18] undergo rhodium-catalyzed transannulation reactions leading to various nitrogen heterocycles, such as imidazoles, pyrrolones, imidazolones, oxazoles, azepines [19][20][21
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2021

Deoxygenative C2-heteroarylation of quinoline N-oxides: facile access to α-triazolylquinolines

  • Geetanjali S. Sontakke,
  • Rahul K. Shukla and
  • Chandra M. R. Volla

Beilstein J. Org. Chem. 2021, 17, 485–493, doi:10.3762/bjoc.17.42

Graphical Abstract
  • isoquinolines was achieved from readily available N-oxides and N-sulfonyl-1,2,3-triazoles. A variety of α-triazolylquinoline derivatives were synthesized with good regioselectivity and in excellent yields under mild reaction conditions. Further, a gram-scale and one-pot synthesis illustrated the efficacy and
  • -catalyzed “Click” chemistry, N-sulfonyl-1,2,3-triazoles have become useful precursors for accessing a variety of heterocyclic moieties [55][56]. In spite of the above methods for the C2-amination, the establishment of a simple, efficient and atom-economical method for the synthesis of 2-triazolylquinoline
  • derivatives is highly desired. The continuous interest and efforts of our group for the derivatization of quinoline moieties [57] and use of N-sulfonyl-1,2,3-triazoles as heterocyclic precursors encouraged us to develop a new strategy for the regioselective C2-triazolylation of quinoline N-oxide under mild
PDF
Album
Supp Info
Letter
Published 17 Feb 2021

1,2,3-Triazoles as leaving groups: SNAr reactions of 2,6-bistriazolylpurines with O- and C-nucleophiles

  • Dace Cīrule,
  • Irina Novosjolova,
  • Ērika Bizdēna and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 410–419, doi:10.3762/bjoc.17.37

Graphical Abstract
  • of an SNAr process on partially deactivated purines as the introduced nucleophiles are mostly seen as electron-donating substituents (e.g., R2N-, RS-, RO-). Herein, we report a synthetic extension of this methodology. We have found that the pronounced leaving group character of 1,2,3-triazoles makes
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2021

1,2,3-Triazoles as leaving groups in SNAr–Arbuzov reactions: synthesis of C6-phosphonated purine derivatives

  • Kārlis-Ēriks Kriķis,
  • Irina Novosjolova,
  • Anatoly Mishnev and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 193–202, doi:10.3762/bjoc.17.19

Graphical Abstract
  • new method for C–N bond transformations into C–P bonds was developed using 1,2,3-triazoles as leaving groups in SNAr–Arbuzov reactions. A series of C6-phosphonated 2-triazolylpurine derivatives was synthesized for the first time, with the isolated yields reaching up to 82% in the C–P-bond-forming
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2021
Other Beilstein-Institut Open Science Activities