Search results

Search for "alkylating agent" in Full Text gives 32 result(s) in Beilstein Journal of Organic Chemistry.

Assembly strategy for thieno[3,2-b]thiophenes via a disulfide intermediate derived from 3-nitrothiophene-2,5-dicarboxylate

  • Roman A. Irgashev

Beilstein J. Org. Chem. 2025, 21, 2489–2497, doi:10.3762/bjoc.21.191

Graphical Abstract
  • -dicarboxylates by its one-pot reduction–alkylation using NaBH4 in DMF followed by an alkylating agent. Base-promoted cyclization of electron-deficient 3-alkylthio derivatives furnished 2-aryl-, 2-aroyl-, and 2-cyano-substituted thieno[3,2-b]thiophenes, bearing a 3-hydroxy group. This protocol broadens access to
  • (Table 2). Thus, 4-(chloromethyl)benzonitrile was used as a model alkylating agent, NaBH4 and Na2S2O4 were used as mild and accessible reducing agents, and K2CO3 was originally considered as a base for the alkylation step. In our first experiment, NaBH4 in methanol was used to reduce disulfide 3 (Table 2
  • 3) was used as solvent, the reduction of disulfide 3 with NaBH4 proceeded more efficiently at reflux for 2 h. The reaction mixture was then treated with K2CO3 and the alkylating agent at room temperature. The product was identified as the desired 3-benzylthio-substituted thiophene-2,5-dicarboxylate
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2025

C2 to C6 biobased carbonyl platforms for fine chemistry

  • Jingjing Jiang,
  • Muhammad Noman Haider Tariq,
  • Florence Popowycz,
  • Yanlong Gu and
  • Yves Queneau

Beilstein J. Org. Chem. 2025, 21, 2103–2172, doi:10.3762/bjoc.21.165

Graphical Abstract
PDF
Album
Review
Published 15 Oct 2025

Synthesis, biological and electrochemical evaluation of glycidyl esters of phosphorus acids as potential anticancer drugs

  • Almaz A. Zagidullin,
  • Emil R. Bulatov,
  • Mikhail N. Khrizanforov,
  • Damir R. Davletshin,
  • Elvina M. Gilyazova,
  • Ivan A. Strelkov and
  • Vasily A. Miluykov

Beilstein J. Org. Chem. 2025, 21, 1909–1916, doi:10.3762/bjoc.21.148

Graphical Abstract
  • oxidation of amide and other amino acid side‐chain fragments. By tracking changes in this oxidation signal upon addition of an alkylating agent, we can infer whether the agent has effectively reacted with (and thus structurally altered) the protein. As illustrated by the black trace in the LSV plot, pure
  • acquiring the control LSV of HSA, 10 µL of each alkylating agent was introduced separately into the albumin solution. As soon as the alkylating agent was added, the characteristic oxidation wave of the albumin nearly vanished or became drastically reduced. Control experiments confirmed that compounds 1–3
  • . These findings provide important insights into the synthesis, cytotoxic activity, and biochemical reactivity of glycidyl esters of phosphorus acids, underscoring their potential as lead structures for further development in anticancer drug discovery and pharmaceutical research. Keywords: alkylating
PDF
Album
Supp Info
Letter
Published 15 Sep 2025

Recent advances in synthetic approaches for bioactive cinnamic acid derivatives

  • Betty A. Kustiana,
  • Galuh Widiyarti and
  • Teni Ernawati

Beilstein J. Org. Chem. 2025, 21, 1031–1086, doi:10.3762/bjoc.21.85

Graphical Abstract
  • cinnamic acid (7) and N,N’-dimethylformamide (DMF)-mediated by POCl3 via acid chloride 36 formation (Scheme 20) [52]. On top of the carboxyl activation approaches demonstrated above, O/N-acylation could also be achieved by employing an electrophilic alkylating agent by exploiting the nucleophilicity of the
  • trimethylsulfoxonium iodide (TMSOI) with DMSO-d6, resulting in CH3/CD3 exchange. Furthermore, Chisholm and co-workers (2019) synthesized bulky cinnamate esters 61–64 utilizing a trichloroacetimidate-based alkylating agent in moderate to excellent yields via carbocation 65 formation upon trichloroacetamide release
PDF
Album
Review
Published 28 May 2025

Studies on the syntheses of β-carboline alkaloids brevicarine and brevicolline

  • Benedek Batizi,
  • Patrik Pollák,
  • András Dancsó,
  • Péter Keglevich,
  • Gyula Simig,
  • Balázs Volk and
  • Mátyás Milen

Beilstein J. Org. Chem. 2025, 21, 955–963, doi:10.3762/bjoc.21.79

Graphical Abstract
  • -monomethylation of the primary amino group of compound 25 by alkylation with methyl iodide or by Eschweiler–Clarke reductive amination with formaldehyde and formic acid were unsuccessful, because the dimethylated byproduct was also formed, even when one equivalent alkylating agent was used. Finally, our efforts
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Synthesis, characterization, antimicrobial, cytotoxic and carbonic anhydrase inhibition activities of multifunctional pyrazolo-1,2-benzothiazine acetamides

  • Ayesha Saeed,
  • Shahana Ehsan,
  • Muhammad Zia-ur-Rehman,
  • Erin M. Marshall,
  • Sandra Loesgen,
  • Abdus Saleem,
  • Simone Giovannuzzi and
  • Claudiu T. Supuran

Beilstein J. Org. Chem. 2025, 21, 348–357, doi:10.3762/bjoc.21.25

Graphical Abstract
  • susceptible to alkylation than the OH group. However, under more basic conditions and using the alkylating agent in excess can lead to a dialkylated product. It has already been established that N-alkylation takes place before O-alkylation because the nitrogen atom is a softer nucleophile as compared to the
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2025

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • friendly and atom-economical process for C–C and C–N bond formations utilizing alcohol as an alkylating agent and hydrogen donor, producing water as the only side-product [6][7][8][9]. Notably, alcohols are inexpensive, abundant and can be obtained from biomass, which makes this method even more attractive
  • synthesis of amines and imines using Mn-pincer catalyst [37]. When t-BuOK (1 equiv) was used as a base, alkylated amine products were observed selectively using alcohol as an alkylating agent, whereas when t-BuONa (1.5 equiv) was used as base, alkylated imine products were isolated (Scheme 6). This
  • group planned the α-alkylation of ketones using alcohols as an alkylating agent [64]. A number of substituted aromatic and heterocyclic ketones with different alcohols were tested and gave good to excellent yields (38–96%) using 4 mol % of Mn6 and 50 mol % of NaOH in toluene at 110 °C for 2 h (Scheme 33
PDF
Album
Review
Published 21 May 2024

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

A study of the DIBAL-promoted selective debenzylation of α-cyclodextrin protected with two different benzyl groups

  • Naser-Abdul Yousefi,
  • Morten L. Zimmermann and
  • Mikael Bols

Beilstein J. Org. Chem. 2022, 18, 1553–1559, doi:10.3762/bjoc.18.165

Graphical Abstract
  • temperature control during the acetolysis step. The silylation method requires careful drying of 1 before the silylation but is otherwise experimentally simple. Hexol 6 was then DCB-protected using 2,4-dichlorobenzyl chloride and sodium hydride in DMSO. As self-condensation of the alkylating agent is possible
PDF
Album
Supp Info
Full Research Paper
Published 17 Nov 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • )–O cross-coupling using oxime esters and phenols 76 (Scheme 30). In 2020, Loh and co-workers [104] reported the copper-catalyzed highly site-selective alkylation of heteroarene N-oxides in the presence of hypervalent iodineIII carboxylates. As an alkylating agent, the hypervalent iodineIII
PDF
Album
Review
Published 12 Oct 2021

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • (hydrogen atom transfer) catalysis to allow the use of alkenes as the alkylating agent either in an intermolecular process using aldehydes 10 and alkenes 11 or intramolecularly using aldehydes 12 (Scheme 2) [27]. The proposed mechanism again proceeds via the formation of an enamine intermediate 13 that then
  • ][33]. When an alkylating agent containing an aryl ring 40 (e.g., phenacyl/benzyl bromides) is used, the enamine intermediate 41 forms a coloured electron-donor acceptor (EDA) complex that can absorb visible light via an intermolecular charge-transfer state (EDA route) [14][34]. Mechanistic
PDF
Album
Review
Published 29 Sep 2020

The McKenna reaction – avoiding side reactions in phosphonate deprotection

  • Katarzyna Justyna,
  • Joanna Małolepsza,
  • Damian Kusy,
  • Waldemar Maniukiewicz and
  • Katarzyna M. Błażewska

Beilstein J. Org. Chem. 2020, 16, 1436–1446, doi:10.3762/bjoc.16.119

Graphical Abstract
  • the side reactions, which originate from BTMS itself, and those resulting from not having taken appropriate precautions during the subsequent solvolysis step. By being alerted to the water-sensitive character of BTMS and the formation of the alkylating agent alkyl bromide (Scheme 1), side reactions
  • out overnight [26][27]. However, during the first step of the McKenna reaction, alkyl bromide is formed (Scheme 1) representing an alkylating agent, which upon prolonged reaction time, may lead to side product formation. In order to study this process, we chose phosphonate analogs 9a–d and acryl amide
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2020

Alkylation of lithiated dimethyl tartrate acetonide with unactivated alkyl halides and application to an asymmetric synthesis of the 2,8-dioxabicyclo[3.2.1]octane core of squalestatins/zaragozic acids

  • Herman O. Sintim,
  • Hamad H. Al Mamari,
  • Hasanain A. A. Almohseni,
  • Younes Fegheh-Hassanpour and
  • David M. Hodgson

Beilstein J. Org. Chem. 2019, 15, 1194–1202, doi:10.3762/bjoc.15.116

Graphical Abstract
  • dr), dimethylated, and recovered 7 (50%, 79:15:6, respectively) [17][18][19]. Application of Lipton's conditions to tartrate 7, cleanly gave the trans-monomethylated product 32, albeit in moderate yield (39%, Scheme 8); however, extension to a higher alkylating agent (PrI) was unsuccessful, returning
  • alkylating agent, which leads to the improved diastereoselectivity [43]. The trans stereochemistry assignment for the dialkylated products 34 follow from the observed equivalence of the acetonide methyl groups in all their proton and carbon NMR spectra. In Seebach's original studies, which established
  • system, where the corresponding diene 39 was isolated in up to 36% yield. In our earlier studies, typically approximately equimolar quantities of tartrate and alkylating agent were used, but with the halide now being synthetically more valuable, efforts focused on conditions which gave the best yields
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2019

An improved synthesis of adefovir and related analogues

  • David J. Jones,
  • Eileen M. O’Leary and
  • Timothy P. O’Sullivan

Beilstein J. Org. Chem. 2019, 15, 801–810, doi:10.3762/bjoc.15.77

Graphical Abstract
  • tosylate 5 remained the superior alkylating agent under these conditions. The reaction of 4 with iodide 7 afforded only a trace amount of the phosphonate, with mostly unreacted starting material evident in the 1H and 31P NMR spectra of the crude reaction mixture. The reaction with triflate 8 resulted in a
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2019

Synthesis and selected transformations of 2-unsubstituted 1-(adamantyloxy)imidazole 3-oxides: straightforward access to non-symmetric 1,3-dialkoxyimidazolium salts

  • Grzegorz Mlostoń,
  • Małgorzata Celeda,
  • Katarzyna Urbaniak,
  • Marcin Jasiński,
  • Vladyslav Bakhonsky,
  • Peter R. Schreiner and
  • Heinz Heimgartner

Beilstein J. Org. Chem. 2019, 15, 497–505, doi:10.3762/bjoc.15.43

Graphical Abstract
  • typical conditions (CHCl3 solution, rt) using 1-bromoadamantane as an alkylating agent. However, formation of the expected 1,3-bis(adamantyloxy)imidazolium salt was not observed neither in the absence nor in the presence of AgBF4. Based on this observation, 1-bromoadamantane was replaced by adamantan-1-yl
PDF
Album
Supp Info
Full Research Paper
Published 19 Feb 2019

Study on the regioselectivity of the N-ethylation reaction of N-benzyl-4-oxo-1,4-dihydroquinoline-3-carboxamide

  • Pedro N. Batalha,
  • Luana da S. M. Forezi,
  • Maria Clara R. Freitas,
  • Nathalia M. de C. Tolentino,
  • Ednilsom Orestes,
  • José Walkimar de M. Carneiro,
  • Fernanda da C. S. Boechat and
  • Maria Cecília B. V. de Souza

Beilstein J. Org. Chem. 2019, 15, 388–400, doi:10.3762/bjoc.15.35

Graphical Abstract
  • treated with potassium carbonate followed by a dropwise addition of bromoethane, as the alkylating agent. This synthetic strategy provided exclusively the 1-ethylated product 7 with a good overall yield (80%, Scheme 1). Previous treatment of 5 with potassium carbonate promotes the establishment of an acid
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2019

An overview of recent advances in duplex DNA recognition by small molecules

  • Sayantan Bhaduri,
  • Nihar Ranjan and
  • Dev P. Arya

Beilstein J. Org. Chem. 2018, 14, 1051–1086, doi:10.3762/bjoc.14.93

Graphical Abstract
PDF
Album
Review
Published 16 May 2018

Investigations towards the stereoselective organocatalyzed Michael addition of dimethyl malonate to a racemic nitroalkene: possible route to the 4-methylpregabalin core structure

  • Denisa Vargová,
  • Rastislav Baran and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2018, 14, 553–559, doi:10.3762/bjoc.14.42

Graphical Abstract
  • , reduction, nitro-aldol reaction, and dehydration (Scheme 1). Methylation of the ester 2 in the alpha position proceeded easily with LDA as a base and methyl iodide as an alkylating agent. The ester functionality was then reduced with DIBAL in dichloromethane to afford aldehyde 4 in 90% yield. A base
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

An efficient synthesis of 1,6-anhydro-N-acetylmuramic acid from N-acetylglucosamine

  • Matthew B. Calvert,
  • Christoph Mayer and
  • Alexander Titz

Beilstein J. Org. Chem. 2017, 13, 2631–2636, doi:10.3762/bjoc.13.261

Graphical Abstract
  • desired alkylation step provides 13 in good yield and excellent diastereoselectivity using commercially available (S)-2-chloropropionic acid as the alkylating agent. Trityl deprotection could be readily accomplished without the need to protect the carboxylic acid, delivering the target compound 1 in good
PDF
Album
Supp Info
Letter
Published 11 Dec 2017

Continuous N-alkylation reactions of amino alcohols using γ-Al2O3 and supercritical CO2: unexpected formation of cyclic ureas and urethanes by reaction with CO2

  • Emilia S. Streng,
  • Darren S. Lee,
  • Michael W. George and
  • Martyn Poliakoff

Beilstein J. Org. Chem. 2017, 13, 329–337, doi:10.3762/bjoc.13.36

Graphical Abstract
  • could be successfully applied to the amination of alcohols, we chose to employ a self-optimising reactor (Figure 1, see Supporting Information File 1 for details) to streamline the optimisation process using 5-amino-1-pentanol (1) as the model substrate and methanol as the alkylating agent (Scheme 1
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2017

Synthesis of 2-oxindoles via 'transition-metal-free' intramolecular dehydrogenative coupling (IDC) of sp2 C–H and sp3 C–H bonds

  • Nivesh Kumar,
  • Santanu Ghosh,
  • Subhajit Bhunia and
  • Alakesh Bisai

Beilstein J. Org. Chem. 2016, 12, 1153–1169, doi:10.3762/bjoc.12.111

Graphical Abstract
  • followed a two-step protocol: In first step a C-alkylation of β-N-arylamido benzylester in presence of 1.2 equivalents of NaH and alkylating agent afford compound (±)-7g in good yields (74%), followed by an oxidative coupling in presence of 1.2 equivalents of KOt-Bu and iodine or NIS as oxidant. Next, we
  • substrate of type 9 could undergo smooth IDC in the presence of iodine (conditions A) to provide an access to compounds 8 in synthetically useful yields (Figure 3). Noticeably, we could directly construct the 2-oxindoles with a geranyl group at the 3-position using geranyl bromide as an alkylating agent
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2016

Supramolecular structures based on regioisomers of cinnamyl-α-cyclodextrins – new media for capillary separation techniques

  • Gabor Benkovics,
  • Ondrej Hodek,
  • Martina Havlikova,
  • Zuzana Bosakova,
  • Pavel Coufal,
  • Milo Malanga,
  • Eva Fenyvesi,
  • Andras Darcsi,
  • Szabolcs Beni and
  • Jindrich Jindrich

Beilstein J. Org. Chem. 2016, 12, 97–109, doi:10.3762/bjoc.12.11

Graphical Abstract
  • of Cin-α-CD. Results and Discussion The two regioisomers of Cin-α-CD were synthesized via direct alkylation of α-CD (1) in DMSO, using NaH as a base for the deprotonation of the secondary OH groups of the α-CD and cinnamyl bromide as an alkylating agent. The reaction resulted in a multicomponent
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2016

Recent developments in copper-catalyzed radical alkylations of electron-rich π-systems

  • Kirk W. Shimkin and
  • Donald A. Watson

Beilstein J. Org. Chem. 2015, 11, 2278–2288, doi:10.3762/bjoc.11.248

Graphical Abstract
  • the most common and effective [14]. Recently, several groups, including our own, have developed copper-catalyzed alkylation reactions of molecules containing electron-rich π-systems. These reactions all utilize alkyl halides as the alkylating agent, and deliver reactivity that is not observed in the
PDF
Album
Review
Published 23 Nov 2015

Advances in the synthesis of functionalised pyrrolotetrathiafulvalenes

  • Luke J. O’Driscoll,
  • Sissel S. Andersen,
  • Marta V. Solano,
  • Dan Bendixen,
  • Morten Jensen,
  • Troels Duedal,
  • Jess Lycoops,
  • Cornelia van der Pol,
  • Rebecca E. Sørensen,
  • Karina R. Larsen,
  • Kenneth Myntman,
  • Christian Henriksen,
  • Stinne W. Hansen and
  • Jan O. Jeppesen

Beilstein J. Org. Chem. 2015, 11, 1112–1122, doi:10.3762/bjoc.11.125

Graphical Abstract
  • both 2-cyanoethyl thioethers (4e) these reagents can be used to selectively deprotect and alkylate only one of the two thiols, affording MPTTF 4a (Scheme 4) [25]. Indeed, the direct preparation of 4h from 4e requires two iterative additions of base and alkylating agent. A wide range of other, more
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2015
Other Beilstein-Institut Open Science Activities