Search results

Search for "C–H bond" in Full Text gives 210 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • become a major strategy for ether functionalization. This review covers C–H/C–H cross-coupling reactions of ether derivatives with various CH bond substrates via non-noble metal catalysts (Fe, Cu, Co, Mn, Ni, Zn, Y, Sc, In, Ag). We discuss advances achieved in these CDC reactions and hope to attract
  • overcome the shortcomings of the above coupling reactions, organic chemists have envisaged the construction of C–C bonds directly through CH bond activation [5]. Fortunately, scientists have used various transition metals as catalysts to realize the activation of various types of C–H bonds, and have
  • ether α-CH bond. In the presence of Cu(II), the C(sp2)–C(sp3) coupling of pyridine N-oxides and coumarins with cyclic ethers could be achieved under mild conditions (Scheme 13) [63][64]. These reactions do not all follow the reaction mechanism of the oxidative olefination of simple ethers. The role of
PDF
Album
Review
Published 06 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • alkyl CH bond to a high valent iron oxo species, resulting in formation of iron hydroxo and alkyl radical intermediates [15]. Subsequent RLT of the hydroxo ligand to the alkyl radical produces a hydroxylated product, allowing for metabolism and excretion of previously diverse bioactive compounds
  • enzymes consists of HAT on a CH bond, followed by RLT with a hydroxy ligand. II: Kochi reported the oxidation of alkyl radicals through LMCT of copper(II) chloride and subsequent radical chlorine ligand transfer [26]. 1-Cyclohexene was also reported to be oxidized to the vicinal dichlorinated product
PDF
Album
Perspective
Published 15 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023
Graphical Abstract
  • bond is thermodynamically stable and possesses a high bond dissociation energy opposing the bond to easy chemical transformation. Therefore, harsh reaction conditions and the necessity of an external activator like catalysts are common prerequisites for processes involving CH bond breaking. Among
  • different types of C–H bonds, an aromatic CH bond is even more inert rendering this type of bond functionalization more difficult. Herewith the term “bond functionalization” is defined as the cleavage of an existing bond with substitution by another bond. Aromatic CH bond functionalizations have gained
  • considerable attention by organic chemists because of the strategic importance of this process as well as the ability to synthesize functionalized aromatic molecules in a straightforward way. Many organic name reactions have been discovered utilizing the CH bond functionalization concept [1]. Metals were
PDF
Album
Review
Published 28 Jun 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • Hz, 1H)], strongly indicating that this product is not the desired structure 6’ but the eight-membered cycloalkene structure 6, shown in Scheme 2. Based on these results and previous reports on the benzylic and allylic CH bond functionalization enabled by metallaphotoredox catalysis [86], we propose
  • a tentative mechanism (Figure 2). First, the radical cation I was generated via the oxidation of indole 5 by the excited Ir-based photocatalyst, followed by sequential regioselective proton transfer on the benzylic dimethylallyl unit CH bond of the C4 side-chain, thereby generating II. Here, the
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • rare earth metal-catalyzed reactions have flourished over the past two decades in the development of functionalized organic molecules of concern. In this review, we discuss recent achievements in the transition-metal and rare earth metal-catalyzed CH bond functionalization of pyridine and look into
  • functionalize a CH bond in pyridine with traditional chemical transformations. On the other hand, intriguing developments have been made for the functionalization of inert C–H bonds in organic synthesis during the past two decades. In this regard, the transition-metal-catalyzed C–H functionalization has made
  • . Review C–H Alkylation of pyridine The CH bond is the backbone of an organic molecule and the conversion of a CH bond to a C–X bond (X = carbon or heteroatom) forms the basis in organic synthesis. The functionalization of C–H bonds is challenging due to a large kinetic barrier for CH bond cleavage and
PDF
Album
Review
Published 12 Jun 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • functional group tolerance with excellent stereoselectivities. In 2016, Ellman and co-workers demonstrated a Rh- or Co-catalyzed highly diastereoselective tandem CH bond addition/aldol reaction sequence [96][97]. The C–H activation was promoted by pyridine, pyrazole, or imine directing groups, while the
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • -catalyzed [3 + 2] annulation/ring-opening/dehydration domino reaction of oxabicyclic alkenes 30 with 2-(1-methylhydrazinyl)pyridine (MHP) directed arenes 87 for the synthesis of benzo[b]fluorenones 88 (Scheme 16) [52]. CH bond functionalization with heterobicyclic alkenes as annulation partners has
  • salicylaldehydes with EWGs failed to react. The authors hypothesized the reaction mechanism begins with the association of the Rh(III) catalyst with the hydroxy group of salicylaldehyde (151a) resulting in a selective cleavage of the aldehyde CH bond producing the rhodocycle 153 which side-on coordinates with the
  • substituent trends were seen as that with the reaction with O-acetyl ketoximes. Mechanistically, the reaction begins when the Rh(III) catalyst is converted to an active Rh(III) species, by AgSbF6 and Cu(OAc)2, which oxidatively inserts into the ortho CH bond forming 163. Migratory insertion of the alkene
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • functionalization of C(sp2) and C(sp3) centers with SCF3, SeCF3, or OCH2CF3 groups among others, by CH bond activation. The scope and limitations of these transformations are discussed in this review. Keywords: CH bond activation; emergent fluorinated groups; homogeneous catalysis; organofluorine chemistry
  • [6][7][8][9][10][11]. Among them [2][5][12][13][14][15][16][17][18], the direct functionalization of a simple CH bond by transition-metal catalysis [19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43] became an important tool offering new
  • retrosynthetic disconnections. In this context, a strong interest from the scientific community was shown towards the challenging synthesis of fluorinated molecules by transition-metal-catalyzed CH bond activation [44][45][46][47][48][49][50], allowing the functionalization of complex molecules and even for
PDF
Album
Review
Published 17 Apr 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • benzyl iodides was observed. Besides classical NHPI/PINO-catalyzed CH-functionalization processes, there is a significant number of works in which PINO plays the role of both the catalyst for CH bond cleavage and the reagent intercepting the resultant C-centered radical [90]. As a rule, stoichiometric
  • introduction of an electron-withdrawing acetoxy group. The DABCO cation radical is less reactive compared to quinuclidine-derived cation radicals. It was involved in the Ni-catalyzed oxidative C–C cross-coupling involving aldehyde CH bond cleavage with the formation of acyl radicals according to the proposed
  • benzylic substrates with azoles was developed [128] (Scheme 27). In the proposed mechanism DDQ participated in benzylic CH bond cleavage. The C–N bond of the final product is formed as a result of the nucleophilic attack of azole on a benzylic cation. A two-fold molar excess of azoles was used. A
PDF
Album
Perspective
Published 09 Dec 2022

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • review paper exploring several procedures of CH bond activation for the functionalization of N-oxides [12] and in 2019, Dongli Li and co-workers analyzed heterocyclic N-oxides with regard to their usefulness in synthesis of organic drug molecules and catalysis [13]. Many review papers have been
PDF
Album
Review
Published 22 Nov 2022

Simple synthesis of multi-halogenated alkenes from 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane)

  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1567–1574, doi:10.3762/bjoc.18.167

Graphical Abstract
  • for obtaining 1. The desired highly halogenated aryl alkenyl ether 2a was obtained, but the yield was unacceptably low (Table 1, entry 1). The low conversion is attributed to use of an insufficient amount of KOH, which was used as a base for deprotonation of the phenolic hydroxy group and acidic CH
  • bond between the bromine and chlorine atoms in 1. Extra KOH was added to improve deprotonation, but the yield of 2a was still low (Table 1, entries 2 and 3). Changing the solvent from THF to DME and increasing the temperature to 80 °C slightly improved the yield of 2a to 19% (Table 1, entry 4
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2022

Synthesis of N-phenyl- and N-thiazolyl-1H-indazoles by copper-catalyzed intramolecular N-arylation of ortho-chlorinated arylhydrazones

  • Yara Cristina Marchioro Barbosa,
  • Guilherme Caneppele Paveglio,
  • Claudio Martin Pereira de Pereira,
  • Sidnei Moura,
  • Cristiane Storck Schwalm,
  • Gleison Antonio Casagrande and
  • Lucas Pizzuti

Beilstein J. Org. Chem. 2022, 18, 1079–1087, doi:10.3762/bjoc.18.110

Graphical Abstract
  • amination by oxidative CH bond functionalizations. These methods showed significant improvement with respect to the substrate scope and reaction conditions. However, mostly they are restricted to substrates containing hydrogen [13][14], alkyl [14][15], or (substituted) phenyl moieties [14][16][17] as N
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2022

Synthetic strategies for the preparation of γ-phostams: 1,2-azaphospholidine 2-oxides and 1,2-azaphospholine 2-oxides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2022, 18, 889–915, doi:10.3762/bjoc.18.90

Graphical Abstract
  • method to synthesize 1,2-azaphospholidine 2-oxide derivatives 13. Arylphosphinyl azides generate arylphosphinyl nitrenes under photoirradiation. The phosphinyl nitrenes underwent an intramolecular insertion into the ortho CH bond of the aryl group accompanied with the Curtius-like rearrangement as well
  • (Scheme 5) [25]. The metal-free intramolecular oxidative CH bond amidation of methyl and ethyl 2,6-dimethylphenylphosphonamidates 24, 26, and 28 is an interesting strategy for the synthesis of 1-methoxy/ethoxy-7-methyl-2-hydrobenzo[c][1,2]azaphosphol-3-one 1-oxide derivatives 25, 27, and 29 in
  • 105 via the copper-catalyzed intramolecular carbene aromatic CH bond insertion (Scheme 20) [44]. This is an efficient synthetic strategy for 3-benzoyl-2-ethoxy-1,3-dihydrobenzo[d][1,2]azaphosphole 2-oxides 106 through the formation of the C–C bond neighboring at the ring phosphorus atom. Synthesis
PDF
Album
Review
Published 22 Jul 2022

Structural basis for endoperoxide-forming oxygenases

  • Takahiro Mori and
  • Ikuro Abe

Beilstein J. Org. Chem. 2022, 18, 707–721, doi:10.3762/bjoc.18.71

Graphical Abstract
  • highly reactive Fe(IV)=O species and a succinate byproduct. This Fe(IV)=O abstracts a hydrogen atom from an aliphatic CH bond of the substrate to generate a radical intermediate. When the enzyme catalyzes the hydroxylation reaction, the radical reacts with the Fe(III)-OH species to form a hydroxylated
PDF
Album
Review
Published 21 Jun 2022

Mechanochemical halogenation of unsymmetrically substituted azobenzenes

  • Dajana Barišić,
  • Mario Pajić,
  • Ivan Halasz,
  • Darko Babić and
  • Manda Ćurić

Beilstein J. Org. Chem. 2022, 18, 680–687, doi:10.3762/bjoc.18.69

Graphical Abstract
  • species, cyclopalladated intermediates, and products (Figure 1). The monitoring results confirmed the crucial role of TsOH and acetonitrile (MeCN) as additives in the catalytic bromination of the CH bond in L1. The experimental results were supported by quantum-chemical calculations, which showed that
  • yield of 30% after one hour of milling (Table 1, entry 10 and Figures S77–S81 in Supporting Information File 1). Interestingly, in the reactions of L4 and L5 with NIS, instead of the halogenation of the aromatic CH bond, imidation of the aliphatic CH bond was observed. Imides are among the most
  • Supporting Information File 1). Compared to L1 [51], iodination of its para-halogenated derivatives resulted in lower yields of diiodinated products (Table 2, entries 9–12) since the activation/halogenation of the CH bond occurs preferentially at the unsubstituted azobenzene phenyl ring [57]. The reactions
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2022

Site-selective reactions mediated by molecular containers

  • Rui Wang and
  • Yang Yu

Beilstein J. Org. Chem. 2022, 18, 309–324, doi:10.3762/bjoc.18.35

Graphical Abstract
  • , directing groups are introduced to the substrates covalently to achieve site-selective CH bond activation, which prospered greatly in the past decades [7][8][9]. Template regulation is also introduced to locate reactive centers in a noncovalent way through hydrogen bonding [10][11][12]. Even though
  • cyclodextrin as the anchoring template. For example, cyclodextrin would fix the steroid substrate with a certain set of orientation, which exposes one certain CH bond to the metalloporphyrin catalytic moiety and produces site-selective oxidized product. As shown in Figure 8, in this methodology, the steroid
  • the end. Once the two parts were mixed in the reaction system, the two p-tert-butylphenyl groups of the substrate 27 were recognized by the β-cyclodextrin and anchored through the host–guest binding. At this stage, the steroid core exposed the 6-position CH bond to the metalloporphyrin unit catalytic
PDF
Album
Review
Published 14 Mar 2022

Iridium-catalyzed hydroacylation reactions of C1-substituted oxabenzonorbornadienes with salicylaldehyde: an experimental and computational study

  • Angel Ho,
  • Austin Pounder,
  • Krish Valluru,
  • Leanne D. Chen and
  • William Tam

Beilstein J. Org. Chem. 2022, 18, 251–261, doi:10.3762/bjoc.18.30

Graphical Abstract
  • regioselectivity. The mechanism and origins of selectivity in the iridium-catalyzed hydroacylation reaction has been examined at the M06/Def2TZVP level of theory. The catalytic cycle consists of three key steps including oxidative addition into the aldehyde CH bond, insertion of the olefin into the iridium
  • bonds [6][7][8][9][10][11][12][13]. Hydroacylation reactions, the formal addition of an aldehyde CH bond across a C–C π-system, has emerged as a powerful, and highly atom-economic approach to synthesize ketones. As such, C–H functionalizations are inherently both environmentally benign and economically
  • to react. Alternative bases (Table 1, entries 7–10) were tested; however, the reaction produced isomerized naphthol derivative 17 rather than the predicted addition product. These results indicate the formation of a phenoxoiridium(I) species assists in the oxidative addition of the CH bond, as
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2022

Multi-faceted reactivity of N-fluorobenzenesulfonimide (NFSI) under mechanochemical conditions: fluorination, fluorodemethylation, sulfonylation, and amidation reactions

  • José G. Hernández,
  • Karen J. Ardila-Fierro,
  • Dajana Barišić and
  • Hervé Geneste

Beilstein J. Org. Chem. 2022, 18, 182–189, doi:10.3762/bjoc.18.20

Graphical Abstract
  • . To assist the metal-free amidation of the aromatic CH bond in 5, we repeated the milling experiment at 40 °C using a heat gun to increase the temperature of the milling jar (see Supporting Information File 1, Figure S2) [42], which gave a mixture of 5 and 6 (ratio 85:15). The same experiment at 60
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2022

DABCO-promoted photocatalytic C–H functionalization of aldehydes

  • Bruno Maia da Silva Santos,
  • Mariana dos Santos Dupim,
  • Cauê Paula de Souza,
  • Thiago Messias Cardozo and
  • Fernanda Gadini Finelli

Beilstein J. Org. Chem. 2021, 17, 2959–2967, doi:10.3762/bjoc.17.205

Graphical Abstract
  • a reactive species, often used in catalytic amounts, capable of promoting a highly selective homolytic cleavage of the CH bond that results in a carbon-centered radical [5][6]. Nitrogenated structures are easily oxidized under mild conditions into their radical or radical cation forms [7], being
  • . Alemán and co-workers also published the use of a photogenerated DABCO radical cation in a distal β-carbonyl enantioselective C–H functionalization for the synthesis of pyrroline derivatives [26] (Figure 2d). The latter is, to the best of our knowledge, the only work reporting a direct substrate CH bond
  • compared to benzaldehyde (17, 55%). Higher amounts of aromatic aldehydes were required, probably due to the diminished hydricity of their CH bond and side reactions under photochemical conditions (see Supporting Information File 1, Table S3 for details). Surprisingly, the very bulky trimethylacetaldehyde
PDF
Album
Supp Info
Letter
Published 21 Dec 2021

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • authors believe this reaction likely proceeds with the σ-aryliron intermediate 42 cyclizing to give the η1-allyliron species 45. Isomerization of 45 would deliver the less-hindered isomer 48 (path i). The stereochemical outcome can be rationalized by the steric interactions of the iron residue and the CH
  • bond of the aromatic ring in 47. Capturing of the iron complex by the Grignard reagent 2, followed by reductive elimination would deliver the observed product 40. Alternatively, the iron species 45 may undergo direct anti-attack by the Grignard reagent (path ii) [76]. One final possibility is the
PDF
Album
Review
Published 07 Dec 2021

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • ]. Organocatalytic aryl C–H activation via a nonradical process represents an enormous challenge in organic synthesis, although the nucleophilic aromatic substitution with cleavage of the electrophilic aryl CH bond has only recently been developed by transition-metal-catalyzed aryl C–H activation [57]. In the
  • presence of a chiral phosphoric acid, the azo group has recently been revealed to be a useful moiety that may efficiently activate an aromatic ring for formal nucleophilic aromatic substitution, resulting in the cleavage of the aryl CH bond and direct arylation of the nucleophile [58]. In 2018, Tan and co
PDF
Album
Review
Published 15 Nov 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • exchange was observed at the ortho-position of 1a with 3.0 equivalents of CD3CO2D under standard conditions (Scheme 5a). Furthermore, a larger value of kinetic isotope effect (KIE = 2.4) was detected (Scheme 5b). These results indicated that the cleavage of CH bond was most likely involved in the rate
PDF
Album
Supp Info
Letter
Published 28 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • involved in the HAT process of benzylic CH bond using DMBP as co-catalyst to deliver benzylic radical species 9-IX (Figure 9) [71]. The benzylic radical 9-IX intercepted with the nickel catalytic cycle to result in the desired products 26. The photoredox nickel-catalyzed arylation of α-amino C(sp3)–H
PDF
Album
Review
Published 31 Aug 2021

Recent advances in the syntheses of anthracene derivatives

  • Giovanni S. Baviera and
  • Paulo M. Donate

Beilstein J. Org. Chem. 2021, 17, 2028–2050, doi:10.3762/bjoc.17.131

Graphical Abstract
  • by treatment with PCC/Celite in dichloromethane (DCM). Finally, treatment with a catalytic amount of CF3SO3H provided the corresponding anthracenes 30a–c in good yields (57–75%) [40]. Metal-catalyzed CH bond activation In 2016, Hong’s group developed a synthetic strategy to generate substituted
  • converted to the substituted anthracenes 109 and 110 by varying the acidic workup procedures. In addition, they prepared 9-chloro-10-phenylanthracene (112) in good yield (87%) through diol 111 [59]. Synthesis of substituted benzo[a]anthracene and dibenzoanthracene derivatives Metal-catalyzed CH bond
PDF
Album
Review
Published 10 Aug 2021
Other Beilstein-Institut Open Science Activities