Search results

Search for "dehydrogenation" in Full Text gives 108 result(s) in Beilstein Journal of Organic Chemistry.

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • of o-nitrotoluene (22) Reduction to 2,2'-diaminobibenzyl (20) Ring-closing via amine condensation Catalytic dehydrogenation 1.1 Oxidative coupling of o-nitrotoluene (22) and reduction to 2,2'-diaminobibenzyl (20) The preparation of dinitrobibenzyl (21) can be achieved by the oxidative coupling of
  • [36] via the polyphosphoric acid (PPA) catalysed cyclisation of 2,2'-diaminobibenzyl (20) at elevated temperatures (Scheme 3) [37][38]. 1.3 Catalytic dehydrogenation An early synthesis of 5H-dibenzo[b,f]azepine (1a) involved the gas phase dehydrogenation of 10,11-dihydro-5H-dibenzo[b,f]azepine (2a) to
PDF
Album
Review
Published 22 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • oxanorbornenes; however, the latter two substrates did not undergo dehydrogenation, generating cis-selective annulated coumarins (10b and 10d). In 2006, the same group applied this methodology for the total synthesis of arnottin I (10h), a coumarin-type natural product isolated from the bark of the Xanthoxylum
  • 10. The selectivity for the non-dehydrogenated coumarins 10d is not understood, but 10b likely does not undergo dehydrogenation because there is no formation of aromaticity to drive the reaction forward. When the bicyclic alkene is substituted unsymmetrically at the bridgehead position, the reaction
PDF
Album
Review
Published 24 Apr 2023

Germacrene B – a central intermediate in sesquiterpene biosynthesis

  • Houchao Xu and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2023, 19, 186–203, doi:10.3762/bjoc.19.18

Graphical Abstract
  • ., by heating with sulphur, to the blue azulene derivative 62 (Scheme 16C) [121][122][124][125][126], but the structure elucidation of this compound was only completed in 1936 [127]. Based on a comparison of IR spectra of natural terpenes, their hydrogenation and dehydrogenation products, the correct
PDF
Album
Review
Published 20 Feb 2023

Sequential hydrozirconation/Pd-catalyzed cross coupling of acyl chlorides towards conjugated (2E,4E)-dienones

  • Benedikt Kolb,
  • Daniela Silva dos Santos,
  • Sanja Krause,
  • Anna Zens and
  • Sabine Laschat

Beilstein J. Org. Chem. 2023, 19, 176–185, doi:10.3762/bjoc.19.17

Graphical Abstract
  • condensation of enals 6 with aldehydes 7a or ketones 7b [6][7][8][9][10][11], isomerization of alkynones 8 [12][13][14][15], Horner–Wadsworth–Emmons reaction of unsaturated phosphonates 9 and aldehydes 10 [16][17], and dehydrogenation of enones 11 [18]. Further, Claisen rearrangement of vinyl propargylic
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • alternative approaches exist. The direct dehydrogenation of 1,4-dithiane is somewhat cumbersome [25], and, moreover, 1,4-dithiane (1) is surprisingly not available in large quantities at a reasonable cost, in spite of its apparent simplicity. Our lab has found that the synthetic method for dihydrodithiins
  • then brominated with an excess of bromination reagent, which effects the 1,2-sulfur-migratory ring expansion, followed by bromination-induced dehydrogenation to the aromatic ring [31]. At the time of writing this review, the resulting benzoannelated dithiane 5 is also commercially available in small
PDF
Album
Review
Published 02 Feb 2023

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • opening of the epoxide (15%). From 41 having the correct tetracyclic skeleton, a transient protection followed by Petasis olefination, deprotection, selenide-mediated α,β-dehydrogenation and Mukaiyama oxidation afforded an advanced intermediate 42 bearing most of the target’s functionalities. A sequence
PDF
Album
Review
Published 12 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • activation for hydrogenation of various organic substrates. More recently, SET reactivity of FLP was discovered [155]. The FLP-catalyzed dehydrogenation of N-protected indolines with H2 release [156] is depicted in Scheme 39. According to the proposed mechanism, the reaction starts with a hydride transfer
  • heterocyclizations. Electrochemical N-ammonium ylide-catalyzed CH-oxidation. Oxidative dimerization of aryl- and alkenylmagnesium compounds catalyzed by quinonediimines. FLP-catalyzed dehydrogenation of N-substituted indolines. Funding This work was supported by the Russian Science Foundation (Grant no. 21-13-00205).
PDF
Album
Perspective
Published 09 Dec 2022

Cyclometalated iridium complexes-catalyzed acceptorless dehydrogenative coupling reaction: construction of quinoline derivatives and evaluation of their antimicrobial activities

  • Hongling Shui,
  • Yuhong Zhong,
  • Renshi Luo,
  • Zhanyi Zhang,
  • Jiuzhong Huang,
  • Ping Yang and
  • Nianhua Luo

Beilstein J. Org. Chem. 2022, 18, 1507–1517, doi:10.3762/bjoc.18.159

Graphical Abstract
  • ][42], we found that cyclometalated iridium catalysts can effectively catalyze the dehydrogenation of alcohols to produce carbonyl compounds and hydrogen gas. Therefore, we used cyclometalated iridium complex (TC-6) to catalyze the ADC reaction of o-aminobenzyl alcohols 1 and aryl/heteroaryl/alkyl
  • released from the dehydrogenation of 2-aminobenzyl alcohol/1-phenylethanol according to the previous literature [28]. Lastly, the desired product 3aa was obtained by the condensation and cyclization of the aldehyde 5 with acetophenone (6) under base conditions. The potential antimicrobial activity of the
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2022

Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants

  • Karan Malhotra and
  • Jakob Franke

Beilstein J. Org. Chem. 2022, 18, 1289–1310, doi:10.3762/bjoc.18.135

Graphical Abstract
  • (12) scaffold to 7β-hydroxythalianol, while CYP705A5 is a desaturase and introduces a double bond at C15 [41]. The related Arabidopsis CYP705A1 (also from clan 71) accepts a slightly different scaffold, arabidiol (11), triggering cleavage of the side chain at the same C15 instead of dehydrogenation
PDF
Album
Supp Info
Review
Published 21 Sep 2022

Inductive heating and flow chemistry – a perfect synergy of emerging enabling technologies

  • Conrad Kuhwald,
  • Sibel Türkhan and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2022, 18, 688–706, doi:10.3762/bjoc.18.70

Graphical Abstract
  • applications. NiO2, on the other hand, was used to achieve the dehydrogenation of amines (to nitriles) and to perform the α,β dehydrogenation of ketones 61. 3.2.3 Using chemically active fixed beds (catalysts): Copper metal in the form of wires or turnings can also be inductively heated when placed inside flow
PDF
Album
Review
Published 20 Jun 2022

DDQ in mechanochemical C–N coupling reactions

  • Shyamal Kanti Bera,
  • Rosalin Bhanja and
  • Prasenjit Mal

Beilstein J. Org. Chem. 2022, 18, 639–646, doi:10.3762/bjoc.18.64

Graphical Abstract
  • moiety in 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), it was well established as a hydride transfer reagent in various organic reactions [14][15]. Generally, DDQ assists in dehydrogenation reactions in organic synthesis [16]. In this context, various carbon–heteroatom bond formation reactions such
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
  • 1,3-butadiene, followed by dehydrogenation gave menadione (10). This proved to be a good synthetic route, leading to menadione in approximately 80% overall yield (Scheme 6). Another interesting synthetic approach was reported by Mal and co-workers, who synthetized menadione (10) via a
PDF
Album
Review
Published 11 Apr 2022

Recent advances and perspectives in ruthenium-catalyzed cyanation reactions

  • Thaipparambil Aneeja,
  • Cheriya Mukkolakkal Abdulla Afsina,
  • Padinjare Veetil Saranya and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 37–52, doi:10.3762/bjoc.18.4

Graphical Abstract
  • afforded the products in excellent yields. The authors also conducted various experimental and theoretical studies to analyze the reaction mechanism. The proposed mechanism begins with the oxidative dehydrogenation of the alcohol to afford the aldehyde which undergoes condensation with ammonia to give the
  • corresponding imine. Finally, oxidative dehydrogenation results in the formation of the nitrile. Conclusion This review summarizes the recent progress in ruthenium-catalyzed cyanation reactions. Due to the wide application of nitrile compounds in pharmaceutical and biological fields, cyanation reactions have
PDF
Album
Review
Published 04 Jan 2022

Efficient N-arylation of 4-chloroquinazolines en route to novel 4-anilinoquinazolines as potential anticancer agents

  • Rodolfo H. V. Nishimura,
  • Thiago dos Santos,
  • Valter E. Murie,
  • Luciana C. Furtado,
  • Leticia V. Costa-Lotufo and
  • Giuliano C. Clososki

Beilstein J. Org. Chem. 2021, 17, 2968–2975, doi:10.3762/bjoc.17.206

Graphical Abstract
  • that, the cyclocondensation [29] of the halogenated anthranilamides 6a,b with benzaldehyde followed by dehydrogenation promoted by iodine gave the corresponding quinazolin-4(3H)-ones 7a,b, which we used in the next step without purification. Finally, chlorination [31] of quinazolin-4(3H)-ones 7a,b by
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2021

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • accelerating imine formation (I-19), and under the catalysis of a chiral phosphoric acid, intramolecular nucleophilic addition occurs to form I-20, followed by oxidative dehydrogenation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). In the presence of 10 mol % chiral phosphoric acid CPA 7, the axially
PDF
Album
Review
Published 15 Nov 2021

Electrocatalytic C(sp3)–H/C(sp)–H cross-coupling in continuous flow through TEMPO/copper relay catalysis

  • Bin Guo and
  • Hai-Chao Xu

Beilstein J. Org. Chem. 2021, 17, 2650–2656, doi:10.3762/bjoc.17.178

Graphical Abstract
  • through reversible reaction with this cationic species. Conclusion In summary, we have achieved the electrochemical dehydrogenation cross-coupling of tetrahydroisoquinolines with terminal alkynes in continuous flow through Cu/TEMPO relay catalysis. This work demonstrates that continuous-flow
PDF
Album
Supp Info
Letter
Published 28 Oct 2021

Synthesis of new bile acid-fused tetrazoles using the Schmidt reaction

  • Dušan Đ. Škorić,
  • Olivera R. Klisurić,
  • Dimitar S. Jakimov,
  • Marija N. Sakač and
  • János J. Csanádi

Beilstein J. Org. Chem. 2021, 17, 2611–2620, doi:10.3762/bjoc.17.174

Graphical Abstract
  • selective acetylation [43], followed by oxidation. Enones 4 and 8 were prepared by dehydrogenation of corresponding ketones with SeO2 in refluxing acetic acid [44]. Microwave-assisted heating of the reaction mixture in a closed vessel (150 °C) helped in decreasing the reaction time for dehydrogenation
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2021

Efficient synthesis of polyfunctionalized carbazoles and pyrrolo[3,4-c]carbazoles via domino Diels–Alder reaction

  • Ren-Jie Fang,
  • Chen Yan,
  • Jing Sun,
  • Ying Han and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2021, 17, 2425–2432, doi:10.3762/bjoc.17.159

Graphical Abstract
  • benzylideneacetone in acetonitrile in the presence of p-TsOH and DDQ resulted in polyfunctionalized carbazoles in satisfactory yields. The reaction mechanism included the DDQ oxidative dehydrogenation of 3-(indol-3-yl)-1,3-diphenylpropan-1-ones to the corresponding 3-vinylindoles, their acid-catalyzed Diels–Alder
  • dehydrogenation reaction was carried out in acetonitrile at room temperature. A series of aromatized pyrrolo[3,4-c]carbazoles 4a–l were successfully synthesized by the one-pot two-step reaction and the results are summarized in Table 1. All reactions proceeded smoothly to give the corresponding pyrrolo[3,4-c
  • active diene, indole-substituted chalcones. Then, the p-TsOH-catalyzed Diels–Alder reaction of indole-chalcones with second chalcones and sequential aromatization through DDQ dehydrogenation resulted in the polyfunctionalized carbazoles 6a–l in good yields (Table 2). Additionally, the similar reaction
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2021

Breaking paracyclophane: the unexpected formation of non-symmetric disubstituted nitro[2.2]metaparacyclophanes

  • Suraj Patel,
  • Tyson N. Dais,
  • Paul G. Plieger and
  • Gareth J. Rowlands

Beilstein J. Org. Chem. 2021, 17, 1518–1526, doi:10.3762/bjoc.17.109

Graphical Abstract
  • highly oxidizing conditions, dehydrogenation of the resulting cyclohexadienol would give 11.The electron-rich 4-hydroxy[2.2]metaparacyclophane (9) participates in ortho selective nitration to give 5. Nitric acid has previously been used to oxidize phenols to cyclohexadienones [69][70], and a plausible
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
PDF
Album
Review
Published 12 May 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
  • dehydration forms D and finally 12. The synthesized naphthoacridines 12 with 2,3-diaminonaphthalene produces 14 via dehydration and dehydrogenation. 2 Azepines Azepines are represented by unsaturated seven atom heterocyles with nitrogen replacing a carbon atom. The benzene-fused azepines known as
PDF
Album
Review
Published 19 Apr 2021

[2 + 1] Cycloaddition reactions of fullerene C60 based on diazo compounds

  • Yuliya N. Biglova

Beilstein J. Org. Chem. 2021, 17, 630–670, doi:10.3762/bjoc.17.55

Graphical Abstract
  • . Catalysis is the next area that is gaining an ever-increasing practical focus in the studies on the use of C60 and fullerene-containing materials [51]. A comparative analysis of the activity of fullerene-containing compounds and noble metals as dehydrogenation catalysts allows to consider the former as
  • the substrate on two sites, namely a metal and a fullerene [53]. This allows to level out some negative features that are characteristic of heterogeneous catalysts. Thus, in dehydrogenation processes, catalytic amounts of a coordinated fullerene in metal fullerides act as a hydrogen acceptor in
PDF
Review
Published 05 Mar 2021

Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement

  • Vladimir Kubyshkin,
  • Rebecca Davis and
  • Nediljko Budisa

Beilstein J. Org. Chem. 2021, 17, 439–460, doi:10.3762/bjoc.17.40

Graphical Abstract
  • entry into the citric acid cycle. The dehydrogenation of proline is involved in numerous biochemical processes. For example, the dehydrogenation of proline linked to an acyl carrier protein makes a first step in the biosynthesis of some neurotoxins from cyanobacteria (ana gene cluster) [68]. The
PDF
Album
Review
Published 15 Feb 2021

Insight into functionalized-macrocycles-guided supramolecular photocatalysis

  • Minzan Zuo,
  • Krishnasamy Velmurugan,
  • Kaiya Wang,
  • Xueqi Tian and
  • Xiao-Yu Hu

Beilstein J. Org. Chem. 2021, 17, 139–155, doi:10.3762/bjoc.17.15

Graphical Abstract
  • between thiol-functionalized β-CD and oleic acid-protected CdS nanocrystals [29]. These spherical CdS–CD nanoparticles could be employed as a photocatalyst for the dehydrogenation of alcohols to aldehydes (at a low concentration of the reactant of 1 mM, ≥92% selectivity) or diols (at a high concentration
  • of the reactant of 300 mM, ≥93% selectivity), with H2 liberation being achieved by visible-light irradiation in an aqueous solution. In comparison, CdS–CD was a highly efficient photocatalyst for benzyl alcohol dehydrogenation (77 µmol H2 in 180 h) compared to the CD-free CdS (5.4 µmol H2 in 30 h
PDF
Album
Review
Published 18 Jan 2021

Synthetic approaches to bowl-shaped π-conjugated sumanene and its congeners

  • Shakeel Alvi and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 2212–2259, doi:10.3762/bjoc.16.186

Graphical Abstract
  • ′-tetramethylethylenediamine (TMEDA) as shown in the Scheme 1. Having the compound 4 in hand, it was subjected to the cyclization in the presence of boron trifluoride to provide the tricyclohexyl-fused benzene derivative which on further dehydrogenation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) afforded 1,5,9
PDF
Album
Review
Published 09 Sep 2020
Other Beilstein-Institut Open Science Activities