Search results

Search for "radical cation" in Full Text gives 159 result(s) in Beilstein Journal of Organic Chemistry.

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • selectively targeted by photoredox catalysis to enable unprecedented modification of the amino acid. In this context, it is worth mentioning that the single-electron oxidation of the indole moiety in tryptophan provides the radical cation, which enables selective C-radical generation at the weaker benzylic
  • proton transfer from the oxidized indole radical cation [75], generated by SET from the activated photocatalyst. The α-amino radical generated by reductive decarboxylation of a DMAT derivative with a redox-active ester (−1.26 V to −1.37 V vs a saturated calomel electrode) would enable turnover of the
  • a tentative mechanism (Figure 2). First, the radical cation I was generated via the oxidation of indole 5 by the excited Ir-based photocatalyst, followed by sequential regioselective proton transfer on the benzylic dimethylallyl unit C–H bond of the C4 side-chain, thereby generating II. Here, the
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

A new oxidatively stable ligand for the chiral functionalization of amino acids in Ni(II)–Schiff base complexes

  • Alena V. Dmitrieva,
  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2023, 19, 566–574, doi:10.3762/bjoc.19.41

Graphical Abstract
  • dimerization of the Schiff base complex and the radical cation formed under one-electron electrochemical oxidation will be sufficiently stable, opening a route to further oxidative modification of the amino acid side chain under appropriate conditions. Additionally, this bulky group may significantly alter the
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • photoexcitation of the photosensitizer 43 to form 44 which can oxidize aniline 36a to give radical cation 46 (Scheme 7). Deprotonation by DBU produces the radical 40. The radical anion photosensitizer 45 can reduce Ni(I) to Ni(0), closing the first catalytic cycle. The Ni(0) complex can undergo oxidative addition
PDF
Album
Review
Published 24 Apr 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • the erythrinadienone intermediate 182. On contrary, common scaffold 180 should hydrolyze to sebiferine-type scaffolds in the presence of water. Taking these results into account, the group exploited the ability of HFIP to stabilize the radical cation formed by PIFA and BF3·EtO2 [95][96] to selectively
  • ). Thus, upon irradiation, iridium polypyridyl photocatalyst allowed the oxidation of the phosphate complex 207 to radical cation 206, which can be readily trapped by TEMPO, and hence stabilizing the imine and allowing cyclization with the pendant amine to form the pyrroloindoline core 210 in 81% yield
  • presence of appropriate additives (Scheme 18). According to the postulated mechanism, the reaction is initiated by an SET of the dicinnamyl ether substrate to Fukuzumi’s salt 233, leading to radical cation 216. Earlier findings of the same group [107] revealed that substitution on the aryl groups is the
PDF
Album
Review
Published 02 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • -diamines [111] (Scheme 21A). The proposed reaction mechanism suggests the generation of a triarylamine radical cation, which oxidizes the vinylarene by a SET mechanism. The resultant vinylarene cation radical X is attacked by the sulfamide nucleophile with Y formation. The second oxidative SET leads to the
PDF
Album
Perspective
Published 09 Dec 2022

Naphthalimide-phenothiazine dyads: effect of conformational flexibility and matching of the energy of the charge-transfer state and the localized triplet excited state on the thermally activated delayed fluorescence

  • Kaiyue Ye,
  • Liyuan Cao,
  • Davita M. E. van Raamsdonk,
  • Zhijia Wang,
  • Jianzhang Zhao,
  • Daniel Escudero and
  • Denis Jacquemin

Beilstein J. Org. Chem. 2022, 18, 1435–1453, doi:10.3762/bjoc.18.149

Graphical Abstract
  • spectroelectrochemistry of the compounds was studied (Figure 7). For NI-PTZ, when a positive potential of +0.53 V (vs Ag/AgNO3) was applied, the hallmark absorption bands of the PTZ•+ radical cation centered at 516, 794, and 891 nm are observed [20]. These bands are similar to the ones observed for the previously
  • the impact of the conformational restriction on the photophysical properties of NI-PhMe2-PTZ. We underline that the absorption of the CT states of the dyads may not be the “simple sum” of the absorption of the radical cation and the radical anion of the dyads, obtained by the spectroelectrochemistry
PDF
Supp Info
Full Research Paper
Published 11 Oct 2022

Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants

  • Karan Malhotra and
  • Jakob Franke

Beilstein J. Org. Chem. 2022, 18, 1289–1310, doi:10.3762/bjoc.18.135

Graphical Abstract
  • compound I (intermediate G), it is now generally accepted as a ferryl (Fe(IV)) oxo species with a radical cation in the porphyrin system [18][23]. In the case of hydroxylations, the oxygen from compound I (intermediate G) can then be transferred by an oxygen rebound mechanism (steps 7 and 8) via the ferryl
PDF
Album
Supp Info
Review
Published 21 Sep 2022

A Streptomyces P450 enzyme dimerizes isoflavones from plants

  • Run-Zhou Liu,
  • Shanchong Chen and
  • Lihan Zhang

Beilstein J. Org. Chem. 2022, 18, 1107–1115, doi:10.3762/bjoc.18.113

Graphical Abstract
  • addition, radical cation addition, and electrophilic aromatic addition, have also been proposed [1][10][29]. A proposed mechanism is depicted in Scheme 2: First, the hydroxy group on the A- or B-ring is converted into a radical by a P450-induced single-electron transformation. The resulting radical then
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2022

Radical cation Diels–Alder reactions of arylidene cycloalkanes

  • Kaii Nakayama,
  • Hidehiro Kamiya and
  • Yohei Okada

Beilstein J. Org. Chem. 2022, 18, 1100–1106, doi:10.3762/bjoc.18.112

Graphical Abstract
  • 183-8509, Japan 10.3762/bjoc.18.112 Abstract TiO2 photoelectrochemical and electrochemical radical cation Diels–Alder reactions of arylidene cycloalkanes are described, leading to the construction of spiro ring systems. Although the mechanism remains an open question, arylidene cyclobutanes are found
  • to be much more effective in the reaction than other cycloalkanes. Since the reaction is completed with a substoichiometric amount of electricity, a radical cation chain pathway is likely to be involved. Keywords: arylidene cycloalkane; Diels–Alder reaction; radical cation; single-electron transfer
  • ; spiro ring system; Introduction Single-electron transfer is one of the simplest modes for small molecule activation, employing a polarity inversion to generate radical ions which have proven to be unique reactive intermediates in the field of synthetic organic chemistry. A radical cation Diels–Alder
PDF
Album
Supp Info
Letter
Published 25 Aug 2022

Electrochemical vicinal oxyazidation of α-arylvinyl acetates

  • Yi-Lun Li,
  • Zhaojiang Shi,
  • Tao Shen and
  • Ke-Yin Ye

Beilstein J. Org. Chem. 2022, 18, 1026–1031, doi:10.3762/bjoc.18.103

Graphical Abstract
  • ). The enol acetate A first undergoes anodic oxidation to form a radical cation intermediate B, which is then intercepted by azidotrimethylsilane to afford the benzyl radical C. Subsequently, this radical is further anodically oxidized to its oxocarbenium ion intermediate D, which finally reacts with
PDF
Album
Supp Info
Letter
Published 12 Aug 2022

Electrochemical and spectroscopic properties of twisted dibenzo[g,p]chrysene derivatives

  • Tomoya Imai,
  • Ryuhei Akasaka,
  • Naruhiro Yoshida,
  • Toru Amaya and
  • Tetsuo Iwasawa

Beilstein J. Org. Chem. 2022, 18, 963–971, doi:10.3762/bjoc.18.96

Graphical Abstract
  • groups are introduced in place of the isopropyl groups, which has a 0.06 V higher oxidation potential than that of MeO-DBC-1. This indicates that alkyl substituents in the X position are effective in stabilizing the radical cation, thus making it more susceptible to oxidation. Unlike DBC-H, an
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2022

Introducing a new 7-ring fused diindenone-dithieno[3,2-b:2',3'-d]thiophene unit as a promising component for organic semiconductor materials

  • Valentin H. K. Fell,
  • Joseph Cameron,
  • Alexander L. Kanibolotsky,
  • Eman J. Hussien and
  • Peter J. Skabara

Beilstein J. Org. Chem. 2022, 18, 944–955, doi:10.3762/bjoc.18.94

Graphical Abstract
  • Figure 9, for the generation of a radical cation and dication at half-wave potential values of +0.65 V (ΔEp = 0.05 V) and +0.87 V (ΔEp = 0.06 V), respectively. Two reduction waves, corresponding to the radical anion and dianion, can be seen at the half-wave potentials of −1.51 V (ΔEp = 0.06 V) and −1.64
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2022

Tetraphenylethylene-embedded pillar[5]arene-based orthogonal self-assembly for efficient photocatalysis in water

  • Zhihang Bai,
  • Krishnasamy Velmurugan,
  • Xueqi Tian,
  • Minzan Zuo,
  • Kaiya Wang and
  • Xiao-Yu Hu

Beilstein J. Org. Chem. 2022, 18, 429–437, doi:10.3762/bjoc.18.45

Graphical Abstract
  • transfer from EsY•− to the substrate α-bromoacetophenone (1a) gives the corresponding acetophenone radical, whilst EsY•− is oxidized to EsY. The acetophenone radical combines with a H-atom abstracted from the radical cation of the Hantzsch ester to form acetophenone (2a) as the final product and diethyl
PDF
Album
Supp Info
Full Research Paper
Published 13 Apr 2022

DABCO-promoted photocatalytic C–H functionalization of aldehydes

  • Bruno Maia da Silva Santos,
  • Mariana dos Santos Dupim,
  • Cauê Paula de Souza,
  • Thiago Messias Cardozo and
  • Fernanda Gadini Finelli

Beilstein J. Org. Chem. 2021, 17, 2959–2967, doi:10.3762/bjoc.17.205

Graphical Abstract
  • a reactive species, often used in catalytic amounts, capable of promoting a highly selective homolytic cleavage of the C–H bond that results in a carbon-centered radical [5][6]. Nitrogenated structures are easily oxidized under mild conditions into their radical or radical cation forms [7], being
  • a common inexpensive organic base with two nitrogen atoms in a bicyclic cage structure. The interaction between these two nitrogen atoms makes DABCO easier to oxidize and improves the lifetime of the radical cation species when compared to quinuclidine [7]. Investigation of DABCO as a hydrogen
  • accessibility, it is still underused, and has only recently started to gain attention from the synthetic community. Murphy and co-workers reported the use of the DABCO radical cation, generated by a stoichiometric oxidant (TPTA-PF6), as a hydrogen abstractor for alpha-nitrogen C–H functionalization [21] (Figure
PDF
Album
Supp Info
Letter
Published 21 Dec 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • ] discovered the photoinduced, copper-catalyzed cyanofluoroalkylation of alkenes and fluoroalkyl iodides 12. The reaction was initiated by the reduction of CuII with tertiary amines, which formed CuICN and an amine radical cation [55]. Under irradiation by ultraviolet light, CuICN was excited and transformed
  • cation I and a CuI species. This process regenerated CuII in the presence of molecular oxygen. The deprotonation of the nitrogen radical cation produces an α–amino radical II, which was further oxidized to the iminium ion III to which the copper alkynylide added forming the desired product (Scheme 17
  • photophysical properties (Scheme 16). In 2019, Vlla’s group [76] explored the copper-catalyzed alkynylation of dihydroquinoxalin-2-ones 34 with terminal alkynes under irradiation. 4-Benzyl-3,4-dihydroquinoxalin-2(1H)-one 35 was subjected to an oxidation process with a CuII salt to generate a nitrogen radical
PDF
Album
Review
Published 12 Oct 2021

Synthesis of phenanthridines via a novel photochemically-mediated cyclization and application to the synthesis of triphaeridine

  • Songeziwe Ntsimango,
  • Kennedy J. Ngwira,
  • Moira L. Bode and
  • Charles B. de Koning

Beilstein J. Org. Chem. 2021, 17, 2340–2347, doi:10.3762/bjoc.17.152

Graphical Abstract
  • synthesis of trisphaeridine to afford the product in four linear steps in an overall yield of 6.5% from 1-bromo-2,4,5-trimethoxybenzene. Keywords: aromatic compounds; cyclization; iminyl radical; phenanthridines; radical cation; synthesis; UV irradiation; Introduction Phenanthridine derivatives have
  • having a methoxy substituent as the leaving group for the formation of phenanthridines. Structure–reactivity relationship studies also indicated that an ortho- or para-methoxy group must be present to stabilize the incipient radical or radical cation intermediate. We propose that the reaction is
  • proceeding by means of the initial generation of an iminyl radical that cyclizes onto the electron-rich aromatic ring or through the formation of a radical cation on the electron-rich benzene ring. Finally, the methodology has successfully been applied to synthesizing the natural product trisphaeridine
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2021

Towards new NIR dyes for free radical photopolymerization processes

  • Haifaa Mokbel,
  • Guillaume Noirbent,
  • Didier Gigmes,
  • Frédéric Dumur and
  • Jacques Lalevée

Beilstein J. Org. Chem. 2021, 17, 2067–2076, doi:10.3762/bjoc.17.133

Graphical Abstract
  • as an electron-donating component with the radical cation dye•+ and therefore, the dye/borate system is able to generate additional free radicals in the reaction medium, improving, in turn, the polymerization process (Scheme 7). This behavior has already been reported in the literature and is in full
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • reaction was observed in its absence. The authors highlighted the role of the solvent hexafluoro-2-propanol (HFIP) in the stabilization of the radical cation induced by PET and its assistance in the hydrogen shift process. Miscellaneous Lewis acid catalysis in olefin hydroalkylation reactions The ability
PDF
Album
Review
Published 07 Jul 2021

Breaking paracyclophane: the unexpected formation of non-symmetric disubstituted nitro[2.2]metaparacyclophanes

  • Suraj Patel,
  • Tyson N. Dais,
  • Paul G. Plieger and
  • Gareth J. Rowlands

Beilstein J. Org. Chem. 2021, 17, 1518–1526, doi:10.3762/bjoc.17.109

Graphical Abstract
  • , protonation might not be the key step, and the highly oxidizing nature of nitration conditions that can lead to the formation of a cationic intermediate via a radical cation might control this reaction [68]. A possible mechanism for the formation of 5 and 6 starts with protonation of 1 give the Wheland
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

Synthetic reactions driven by electron-donor–acceptor (EDA) complexes

  • Zhonglie Yang,
  • Yutong Liu,
  • Kun Cao,
  • Xiaobin Zhang,
  • Hezhong Jiang and
  • Jiahong Li

Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67

Graphical Abstract
  • additive to give corresponding thiophene radical 76 and aniline radical cation under irradiation with light. Then, 76 reacted with 73, giving rise to corresponding radical 77. Finally, product 74 was given via hydrogen atom transfer (Scheme 26). In contrast to (hetero)aryl halides with indispensable
  • occurs, giving radical 146 and radical cation 147, respectively. Finally, radical 146 undergoes decarboxylation to afford an aryl radical and then combines with radical cation 147, yielding product 144 (Scheme 50). It should be noted that only when NHPI is firstly activated can it turn into an electron
PDF
Album
Review
Published 06 Apr 2021

CF3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry

  • Anthony J. Fernandes,
  • Armen Panossian,
  • Bastien Michelet,
  • Agnès Martin-Mingot,
  • Frédéric R. Leroux and
  • Sébastien Thibaudeau

Beilstein J. Org. Chem. 2021, 17, 343–378, doi:10.3762/bjoc.17.32

Graphical Abstract
  • nonfluorinated analogues (Eox (PhNMe2) = +0.71 V (SCE)), the radical cation 180 is formed under the reaction conditions, and deprotonation at the methylene unit near the CF3 group is highly favored because of the higher acidity, accounting for the observed high regioselectivity. In addition, the transient
  • methoxylation or acetoxylation, respectively (Scheme 53). The driving force in this reaction is assumed to be the deprotonation of radical cation 215, a highly destabilized species due to the presence of the strongly electron-withdrawing CF3 substituent, which leads to radical 216, synergistically stabilized by
PDF
Album
Review
Published 03 Feb 2021

Metal-free synthesis of biarenes via photoextrusion in di(tri)aryl phosphates

  • Hisham Qrareya,
  • Lorenzo Meazza,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 3008–3014, doi:10.3762/bjoc.16.250

Graphical Abstract
  • –20-fold amount. Furthermore, the aryl radical/cation addition onto the aromatic reactant may lead to a mixture of regioisomers when using non-symmetrical Ar–H. A possible solution is having recourse to an intramolecular free radical ipso substitution reaction where an XSO2 tether is placed between
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2020

On the mass spectrometric fragmentations of the bacterial sesterterpenes sestermobaraenes A–C

  • Anwei Hou and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2020, 16, 2807–2819, doi:10.3762/bjoc.16.231

Graphical Abstract
  • radical cation 1•+ is obtained from which the methyl group C23 can directly be lost by an α-cleavage leading to fragment a1+ (Scheme 1A). However, the radical centred at the bridgehead carbon C11 is orthogonal to, or in other words, not in conjugation with the radical cation at C12–13. Therefore, an
PDF
Album
Supp Info
Letter
Published 19 Nov 2020

3-Acetoxy-fatty acid isoprenyl esters from androconia of the ithomiine butterfly Ithomia salapia

  • Florian Mann,
  • Daiane Szczerbowski,
  • Lisa de Silva,
  • Melanie McClure,
  • Marianne Elias and
  • Stefan Schulz

Beilstein J. Org. Chem. 2020, 16, 2776–2787, doi:10.3762/bjoc.16.228

Graphical Abstract
  • explained by the different stabilization of the respective ions (Figure 3). The abundance of m/z 68 is higher in isoprenyl esters due to the more stable allyl radical cation (Figure 3A). In contrast, prenyl ester fragmentation produces a stabilized allyl cation m/z 69 (Figure 3B), while isoprenyl esters
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2020

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • ]•+, with the latter oxidising 22 to give radical cation 22•+ and turn over the photocatalytic cycle. The radical cation 22•+ is then proposed to participate in a two-step electron and proton exchange process with [CoII] to give [H–CoIII] and iminium ion 24, likely via a [CoI] intermediate. [H–CoIII] can
  • investigations [21] showed that after excitation of the EDA complex, the electrophilic radical 40• that is formed enters the same chain propagation cycle as in Scheme 1, whereas the radical cation 41•+ is proposed to be unstable and decomposes. The third approach, also developed by Melchiorre et al., was based
  • subsequently oxidise 60 to give a nucleophilic radical R• that enters a similar RCA cycle as for Scheme 7. However, in the absence of an external photocatalyst, radical cation intermediate 62•+ is reduced by another molecule of 60, thus propagating a radical chain mechanism that leads to the formation of
PDF
Album
Review
Published 29 Sep 2020
Other Beilstein-Institut Open Science Activities