Search results

Search for "tertiary alcohol" in Full Text gives 83 result(s) in Beilstein Journal of Organic Chemistry.

A novel three-component reaction between isocyanides, alcohols or thiols and elemental sulfur: a mild, catalyst-free approach towards O-thiocarbamates and dithiocarbamates

  • András György Németh,
  • György Miklós Keserű and
  • Péter Ábrányi-Balogh

Beilstein J. Org. Chem. 2019, 15, 1523–1533, doi:10.3762/bjoc.15.155

Graphical Abstract
  • %, respectively) that might be attributed either to steric hindrance or the growing instability of the conjugate base of the secondary and tertiary alcohol, respectively. The present method provided the allylic derivative 3j in 72% yield, however, applying ethylene glycol resulted in 3k in 34% yield only. In the
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2019

Alkylation of lithiated dimethyl tartrate acetonide with unactivated alkyl halides and application to an asymmetric synthesis of the 2,8-dioxabicyclo[3.2.1]octane core of squalestatins/zaragozic acids

  • Herman O. Sintim,
  • Hamad H. Al Mamari,
  • Hasanain A. A. Almohseni,
  • Younes Fegheh-Hassanpour and
  • David M. Hodgson

Beilstein J. Org. Chem. 2019, 15, 1194–1202, doi:10.3762/bjoc.15.116

Graphical Abstract
  • selective deprotection in α-diazo ester 23 in the presence of the tertiary TBS ether. It was considered important that the tertiary alcohol remain masked during projected oxidation of the released secondary alcohol to give the ketone functionality in the cycloaddition substrate, as otherwise essentially
  • group strategy led us to TES protection at both alcohols, on the basis that this group should be robust enough to withstand the enolate manipulation chemistry, that desilylation of the secondary TES ether during acetonide removal could be restored in the subsequent tertiary alcohol silylation step, that
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2019

Synthesis of eunicellane-type bicycles embedding a 1,3-cyclohexadiene moiety

  • Alex Frichert,
  • Peter G. Jones and
  • Thomas Lindel

Beilstein J. Org. Chem. 2018, 14, 2461–2467, doi:10.3762/bjoc.14.222

Graphical Abstract
  •  3). For the synthesis of 25, we started from the known limonene oxide-derived diol 20 [24] that was hydrogenated, oxidized, and silylated at the tertiary alcohol moiety (81%). Reaction of deprotonated 21 with ethyl cyanoformate afforded cyanohydrin 22 by attack of liberated cyanide at the carbonyl
  • the relative configuration shown in Scheme 4. From cyanohydrin 22 HCN was eliminated by treatment with diluted NaOH (100%, Scheme 3). The resulting ketone 23 reacted with lithiated alkyne 12 affording diastereomerically pure tertiary alcohol 24 (63%) that showed a broad hydroxy signal in the 1H NMR
  • , treatment of 25 with TiCl4/Zn did not lead to pinacol cyclization and we have evidence that the aldehyde group stayed in place and the keto group had been reduced. Installation of a TMS group at the tertiary alcohol moiety of 25 (TMSOTf, 2,6-lutidine) formed 26, which was simply reduced at the keto function
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source

  • Tetsuaki Fujihara and
  • Yasushi Tsuji

Beilstein J. Org. Chem. 2018, 14, 2435–2460, doi:10.3762/bjoc.14.221

Graphical Abstract
  • 2c, respectively, were compatible with the reaction conditions. For the carboxylation of tertiary-alcohol-derived acetates to the corresponding carboxylic acids 2d,e, CoI2(bpy) was found to be an effective catalyst. The yields of product 2 decreased when less bulky substituents (R1) were used. Thus
PDF
Album
Review
Published 19 Sep 2018
Graphical Abstract
  • the tertiary alcohol 4f in 69% yield (Table 1, entry 6). Inspired by Girijavallabhan and co-workers’ report [10], we were able to trap the tertiary alkyl radical with S-phenyl benzene thiosulfonate (PhSO2SPh, Table 1, entry 7) and Se-phenyl 4-methylbenzenesulfonoselenoate (TsSePh, Table 1, entry 8) [3
PDF
Album
Supp Info
Full Research Paper
Published 28 Aug 2018

Heterogeneous acidic catalysts for the tetrahydropyranylation of alcohols and phenols in green ethereal solvents

  • Ugo Azzena,
  • Massimo Carraro,
  • Gloria Modugno,
  • Luisa Pisano and
  • Luigi Urtis

Beilstein J. Org. Chem. 2018, 14, 1655–1659, doi:10.3762/bjoc.14.141

Graphical Abstract
  •  1). Finally, the tetrahydropyranylation of a tertiary alcohol 1j as well as of phenols 1k and 1l required, besides the employment of 2.0 equiv of DHP, relatively longer reaction times and higher temperatures. It is worth noting that under our mild reaction conditions we did not observe any
  • , the mixture obtained by reacting 1f with 1.1 equiv of 2 and 3 mol ‰ of NH4HSO4@SiO2 in 2-MeTHF under dry Ar was filtered and dropwise added to a vigorously stirred freshly prepared solution of EtMgBr in the same solvent at rt. Aqueous work-up and flash chromatography afforded the desired tertiary
  • alcohol 4fa in 78% yield (Scheme 4). Under similar conditions, protection of 1f in CPME, followed by filtration and dropwise addition of the resulting solution to a suspension of LiAlH4 in the same solvent, afforded the monoprotected diol 4fb in almost quantitative yield (Scheme 5). Conclusion The above
PDF
Album
Supp Info
Letter
Published 03 Jul 2018

Investigations of alkynylbenziodoxole derivatives for radical alkynylations in photoredox catalysis

  • Yue Pan,
  • Kunfang Jia,
  • Yali Chen and
  • Yiyun Chen

Beilstein J. Org. Chem. 2018, 14, 1215–1221, doi:10.3762/bjoc.14.103

Graphical Abstract
  • (Scheme 4). Tertiary alcohols 6 were reported to be activated by cyclic iodine(III) reagents under photoredox conditions to generate alkoxyl radicals, and subsequently underwent β-fragmentation and alkynylation to yield 7 after eliminating the arylketone [25]. With tertiary alcohol 6a as the alkyl radical
  • derivatives for radical alkynylations in photoredox catalysis. Reaction conditions: tertiary alcohol 6 (0.25 mmol, 2.5 equiv), alkynylbenziodoxole 3 (0.10 mmol, 1.0 equiv), Ru(bpy)3(PF6)2 (0.002 mmol, 0.02 equiv), and BI-OAc (0.25 mmol, 2.5 equiv) in 2.0 mL DCE for 24 h under a nitrogen atmosphere, unless
PDF
Album
Supp Info
Full Research Paper
Published 28 May 2018

Copper-catalyzed asymmetric methylation of fluoroalkylated pyruvates with dimethylzinc

  • Kohsuke Aikawa,
  • Kohei Yabuuchi,
  • Kota Torii and
  • Koichi Mikami

Beilstein J. Org. Chem. 2018, 14, 576–582, doi:10.3762/bjoc.14.44

Graphical Abstract
  • have so far been reported [7][28][29][30]. In 2007, Gosselin and Britton et al. reported that treatment of ethyl trifluoropyruvate (1a) with (R)-BINOL-mediated organozincate as a chiral methylating regent provided the corresponding methylated tertiary alcohol 2a in moderate enantioselectivity (Scheme 1
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

From dipivaloylketene to tetraoxaadamantanes

  • Gert Kollenz and
  • Curt Wentrup

Beilstein J. Org. Chem. 2018, 14, 1–10, doi:10.3762/bjoc.14.1

Graphical Abstract
  • -type double bonds in the bisdioxines under acidic conditions generates a tertiary alcohol, which again undergoes a transannular oxa-Michael-type ring closure forming a tetraoxaadamantane. Free carboxylic acid functions are decarboxylated in this process (Scheme 7), but amide and ester functions are
PDF
Album
Review
Published 02 Jan 2018

Acid-catalyzed ring-opening reactions of a cyclopropanated 3-aza-2-oxabicyclo[2.2.1]hept-5-ene with alcohols

  • Katrina Tait,
  • Alysia Horvath,
  • Nicolas Blanchard and
  • William Tam

Beilstein J. Org. Chem. 2017, 13, 2888–2894, doi:10.3762/bjoc.13.281

Graphical Abstract
  • reactions. The scope of the reaction was successfully expanded to include primary, secondary, and tertiary alcohol nucleophiles. Through X-ray crystallography, the stereochemistry of the product was determined which confirmed an SN2-like mechanism to form the ring-opened product. Keywords: acid catalysis
  • product (Table 3, entry 9). The cyclic alcohols cyclohexanol and cyclopentanol (Table 3, entries 10 and 11) produced low amounts of the ring-opened alcohol in a 24% and 26% yield, respectively. The use of a tertiary alcohol surprisingly resulted in a moderate yield, with tert-butanol producing a 50% yield
  • of the reaction was successfully expanded to include primary, secondary, and tertiary alcohol nucleophiles. Through X-ray crystallography, the stereochemistry of the product was determined which confirmed an SN2-like mechanism to form the ring-opened product. Further investigation of the ring-opening
PDF
Album
Supp Info
Full Research Paper
Published 27 Dec 2017

The photodecarboxylative addition of carboxylates to phthalimides as a key-step in the synthesis of biologically active 3-arylmethylene-2,3-dihydro-1H-isoindolin-1-ones

  • Ommid Anamimoghadam,
  • Saira Mumtaz,
  • Anke Nietsch,
  • Gaetano Saya,
  • Cherie A. Motti,
  • Jun Wang,
  • Peter C. Junk,
  • Ashfaq Mahmood Qureshi and
  • Michael Oelgemöller

Beilstein J. Org. Chem. 2017, 13, 2833–2841, doi:10.3762/bjoc.13.275

Graphical Abstract
  • and subsequent column chromatography. All compounds 3 showed a characteristic pair of doublets between 3 and 4 ppm with a large geminal 2J coupling of 12–16 Hz for the benzylic methylene group (-CH2Ar) in their 1H NMR spectra and a singlet at 90 ± 3 ppm for the newly formed tertiary alcohol (C–OH) in
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2017

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation. Part 1: Use of CF3SO2Na

  • Hélène Guyon,
  • Hélène Chachignon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2764–2799, doi:10.3762/bjoc.13.272

Graphical Abstract
  • in the presence of an aryl or an alkyl group. The number of methylene units between the alkene and the tertiary alcohol function was studied: n = 0, 2, and 3 were suitable for generating thermodynamically favoured 3, 5, and 6-membered cyclic transition states; the reaction failed with n = 1, 4
PDF
Album
Full Research Paper
Published 19 Dec 2017

Mechanochemical synthesis of small organic molecules

  • Tapas Kumar Achar,
  • Anima Bose and
  • Prasenjit Mal

Beilstein J. Org. Chem. 2017, 13, 1907–1931, doi:10.3762/bjoc.13.186

Graphical Abstract
  • nearly 90% yields for α-amino esters in 90–120 min (Scheme 18). The Ritter reaction is another significant carbon–nitrogen (C–N) bond forming reaction in the synthesis of amides [86]. Generally, a nitrile and a tertiary alcohol in presence of a strong acid react to create amides. Major drawbacks
PDF
Album
Review
Published 11 Sep 2017

Synthesis of alkynyl-substituted camphor derivatives and their use in the preparation of paclitaxel-related compounds

  • M. Fernanda N. N. Carvalho,
  • Rudolf Herrmann and
  • Gabriele Wagner

Beilstein J. Org. Chem. 2017, 13, 1230–1238, doi:10.3762/bjoc.13.122

Graphical Abstract
  • coincide in 13 but are approximately 2 ppm apart in 12. Compounds 12 show a signal for the C=O near 206 ppm and one for the sulfonamide carbon at about 65 ppm. In compounds 13, there is a signal for the C=N around 194 ppm and one for the tertiary alcohol carbon near 73 ppm. All other signals of the camphor
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2017

Revaluation of biomass-derived furfuryl alcohol derivatives for the synthesis of carbocyclic nucleoside phosphonate analogues

  • Bemba Sidi Mohamed,
  • Christian Périgaud and
  • Christophe Mathé

Beilstein J. Org. Chem. 2017, 13, 251–256, doi:10.3762/bjoc.13.28

Graphical Abstract
  • loss of AcOH leading to compound (+/−)-15 with 85% yield. The 1,3-allylic transposition of the hindered tertiary alcohol group under acidic conditions has not been reported yet for such compounds. It may conceivably that such a transposition occurs through the formation of an allylic carbocation which
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2017

Chromium(II)-catalyzed enantioselective arylation of ketones

  • Gang Wang,
  • Shutao Sun,
  • Ying Mao,
  • Zhiyu Xie and
  • Lei Liu

Beilstein J. Org. Chem. 2016, 12, 2771–2775, doi:10.3762/bjoc.12.275

Graphical Abstract
  • -catalyzed enantioselective addition of aryl halides to both arylaliphatic and aliphatic ketones with high enantioselectivity in an intramolecular version, providing facile access to enantiopure tetrahydronaphthalen-1-ols and 2,3-dihydro-1H-inden-1-ols containing a tertiary alcohol. Keywords: arylation
  • ; asymmetric catalysis; chromium; ketone; tertiary alcohol; Introduction Catalytic enantioselective carbon–carbon bond formation reactions have achieved enormous development during the last few decades as a consequence of the growing demand for enantiopure compounds in modern industry, especially the
  • -catalyzed enantioselective arylation of ketones has never been reported to date [44]. Tetrahydronaphthalen-1-ol bears a chiral tertiary alcohol center and is a common structural motif in numerous biologically active natural products and clinical drugs [45]. The method to prepare these compounds through
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2016

Palladium-catalyzed ring-opening reactions of cyclopropanated 7-oxabenzonorbornadiene with alcohols

  • Katrina Tait,
  • Oday Alrifai,
  • Rebecca Boutin,
  • Jamie Haner and
  • William Tam

Beilstein J. Org. Chem. 2016, 12, 2189–2196, doi:10.3762/bjoc.12.209

Graphical Abstract
  • cyclopropanated 7-oxabenzonorbornadiene derivatives using alcohol nucleophiles were investigated. The optimal conditions were found to be 10 mol % PdCl2(CH3CN)2 in methanol, offering yields up to 92%. The reaction was successful using primary, secondary and tertiary alcohol nucleophiles and was compatible with a
  • 8a still recovered as an inseparable mixture (Table 5, entry 6). Unexpectedly, using a tertiary alcohol proceeded quicker than a secondary alcohol and resulted in complete conversion to ring-opened product 11p in a moderate yield of 56% (Table 5, entry 7). Cyclic alcohol nucleophiles were also
  • regioisomer in all cases. The scope of the reaction was also successfully expanded to include various primary, secondary, and tertiary alcohol nucleophiles. Various chemical transformations of 7-oxabenzonorbornadiene 1. Nucleophilic ring-opening reactions of 7-oxabenzonorbornadiene 1. Preparation of
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2016

Practical synthetic strategies towards lipophilic 6-iodotetrahydroquinolines and -dihydroquinolines

  • David R. Chisholm,
  • Garr-Layy Zhou,
  • Ehmke Pohl,
  • Roy Valentine and
  • Andrew Whiting

Beilstein J. Org. Chem. 2016, 12, 1851–1862, doi:10.3762/bjoc.12.174

Graphical Abstract
  • chromatography or distillation. Using one equivalent lowered the yield, but minimised bis-adduct formation, which allowed facile purification by short path distillation on larger scales. Compound 8 was functionalised to the tertiary alcohol 9 by a Grignard reaction with MeMgBr, which could be directly cyclised
  • -dimethylacryloyl chloride and pyridine provided 12 in good yield (Scheme 5). The acid-catalysed reaction with 12 was predicted to proceed via initial formation of the corresponding tertiary alcohol involving a Markovnikov addition, before cyclisation as with 10. Indeed, cyclisation product 13 (see Supporting
  • intermediate 7. Synthesis of THQ 10, by initial aza-Michael addition, followed by formation of the tertiary alcohol 9, which was then cyclised with H2SO4. Synthesis of THQ 14 by initial acylation, cyclisation with H2SO4 and reduction with borane·dimethyl sulphide complex. N-Alkylation of 13 and 14. Facile
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2016

Rearrangements of organic peroxides and related processes

  • Ivan A. Yaremenko,
  • Vera A. Vil’,
  • Dmitry V. Demchuk and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2016, 12, 1647–1748, doi:10.3762/bjoc.12.162

Graphical Abstract
  • peroxyester B is initially prepared from a tertiary alcohol A and a peracid. In addition, the peroxy ester can also be prepared via the reaction of a ketone and a peracid (i.e., through a Baeyer–Villiger oxidation); the additional product of peracid to ketone is often referred to as the Criegee intermediate
  • feature of the Criegee rearrangement is that the Criegee intermediate rearranges into a carbocation. The mechanism of the Criegee reaction is presented in Scheme 38. Initially the reaction of the peracid with the tertiary alcohol 122 produces perester (Criegee intermediate) 123. One alkyl substituent
PDF
Album
Review
Published 03 Aug 2016

Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups

  • Jakub Saadi,
  • Christoph Bentz,
  • Kai Redies,
  • Dieter Lentz,
  • Reinhold Zimmer and
  • Hans-Ulrich Reissig

Beilstein J. Org. Chem. 2016, 12, 1236–1242, doi:10.3762/bjoc.12.118

Graphical Abstract
  • –R2 = (CH2)4] typical Heck reaction conditions employing styrene as olefin component not only led to the desired styrene derivative B but mainly to the cyclized product C. If the reaction was performed without the olefin it provided only the tertiary alcohol C in reasonable yield [5]. Similar C–C bond
  • determined by an X-ray crystal structure analysis of the corresponding p-nitrobenzoate 12a obtained by esterification of the tertiary alcohol under standard conditions (Scheme 4, Figure 1) [13]. The configuration of the second product 11b is only tentatively assigned as depicted since the available data do
  • -iodoaniline derivative to a tricyclic tertiary alcohol as reported by Solé et al. [23]. Proposed transition state (TS) explaining the stereoselective formation of cyclization products. Possible mechanism of the reduction of palladium(II) to palladium(0) by triethylamine (additional ligands at palladium are
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2016

NeoPHOX – a structurally tunable ligand system for asymmetric catalysis

  • Jaroslav Padevět,
  • Marcus G. Schrems,
  • Robin Scheil and
  • Andreas Pfaltz

Beilstein J. Org. Chem. 2016, 12, 1185–1195, doi:10.3762/bjoc.12.114

Graphical Abstract
  • intermediate is a NeoPHOX derivative bearing a methoxycarbonyl group at the stereogenic center next to the oxazoline N atom. The addition of methylmagnesium chloride leads to a tertiary alcohol, which can be acylated or silylated to produce NeoPHOX ligands with different sterical demand. The new NeoPHOX
  • -butyl group of tert-leucine, which can be converted to a sterically demanding substituent by double addition of Grignard or alkyllithium reagents and subsequent protection of the resulting tertiary alcohol. An attractive feature of this approach is that by proper choice of the alkylmetal reagent and the
  • these conditions, although this method had been successfully used for the alkylation and acylation of the tertiary alcohol function of analogous serine derived PHOX ligands [30]. Among various amines, 2,6-lutidine was finally identified as a suitable base for conversion to the desired derivatives in 67
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

Studies on the synthesis of peptides containing dehydrovaline and dehydroisoleucine based on copper-mediated enamide formation

  • Franziska Gille and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2016, 12, 564–570, doi:10.3762/bjoc.12.55

Graphical Abstract
  • acids dehydrovaline or dehydroisoleucine, e.g., found in myxovalargin (1), are much more challenging to prepare due to steric hindrance in the β-position and the issue of regiocontrol during elimination [4][5], as β-elimination of a tertiary alcohol group often leads to the terminal instead of the
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2016

Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions

  • Rajeev S. Menon,
  • Akkattu T. Biju and
  • Vijay Nair

Beilstein J. Org. Chem. 2016, 12, 444–461, doi:10.3762/bjoc.12.47

Graphical Abstract
  • -aminoketones 39 in high enantioselectivity [41]. Notably, the homoenolate or enolate reactivity of the NHC-enal adduct was not observed in this case. The presence of a tertiary alcohol functionality and the steric bulk of the NHC-precatalyst 40 were essential for the selective formation of the aza-benzoin
PDF
Album
Correction
Review
Published 09 Mar 2016

Diastereoselective synthesis of new O-alkylated and C-branched inositols and their corresponding fluoro analogues

  • Charlotte Collet,
  • Françoise Chrétien,
  • Yves Chapleur and
  • Sandrine Lamandé-Langle

Beilstein J. Org. Chem. 2016, 12, 353–361, doi:10.3762/bjoc.12.39

Graphical Abstract
  • rather contradictory concerning the acetylation of this tertiary alcohol using acetic anhydride [50][51]. With regard to a PET application, the protection of this hydroxy group is of paramount importance since the free hydroxy group could impair the incorporation of the radioactive fluorine. Therefor
  • several methods of acetylation were carried out on myo-14, which was used as model. The best results for the acetylation of the tertiary alcohol in good yield was obtained with the transesterification method using isopropenyl acetate as acylating agent and p-toluenesulfonic acid as catalyst at 80 °C for 2
  • stage. For this, compounds myo-20 and scyllo-20 were reacted with tosyl chloride in the presence of a catalytic amount of triethylamine at room temperature for 3 h to give tosylated myo-22 and scyllo-22 in 70 and 71% yield, respectively. Next, acetylation of the tertiary alcohol was performed before
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2016

Synthesis of Xenia diterpenoids and related metabolites isolated from marine organisms

  • Tatjana Huber,
  • Lara Weisheit and
  • Thomas Magauer

Beilstein J. Org. Chem. 2015, 11, 2521–2539, doi:10.3762/bjoc.11.273

Graphical Abstract
  • literature-known procedure [47]. Regioselective reduction with sodium borohydride, followed by dehydration under Mitsunobu conditions and silylation of the tertiary alcohol furnished trimethylsiloxy ketone 78. The ketone functionality was then diastereoselectively reduced under Corey–Bakshi–Shibata
PDF
Album
Review
Published 10 Dec 2015
Other Beilstein-Institut Open Science Activities