Search results

Search for "Brønsted acids" in Full Text gives 86 result(s) in Beilstein Journal of Organic Chemistry.

Electron-deficient pyridinium salts/thiourea cooperative catalyzed O-glycosylation via activation of O-glycosyl trichloroacetimidate donors

  • Mukta Shaw,
  • Yogesh Kumar,
  • Rima Thakur and
  • Amit Kumar

Beilstein J. Org. Chem. 2017, 13, 2385–2395, doi:10.3762/bjoc.13.236

Graphical Abstract
  • amplified in the presence of other cocatalysts known as “cooperative catalysis” [23]. In particular, cooperativity between Brønsted acids and hydrogen-bonding cocatalysts such as thiourea derivatives has attracted much interest [24][25][26][27][28][29]. Despite the broad application of cooperative catalysis
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Mechanochemical synthesis of small organic molecules

  • Tapas Kumar Achar,
  • Anima Bose and
  • Prasenjit Mal

Beilstein J. Org. Chem. 2017, 13, 1907–1931, doi:10.3762/bjoc.13.186

Graphical Abstract
  • reaction medium, solvent-free synthesis, microwave synthesis, use of different Lewis acids FeCl3, NiCl2, BiCl3, InBr3, use of Brønsted acids PTSA, etc. are also reported [129][130]. Recently, Mal and co-workers reported a mechanochemical Biginelli reaction by a subcomponent synthesis approach [131][132
PDF
Album
Review
Published 11 Sep 2017

cis-Diastereoselective synthesis of chroman-fused tetralins as B-ring-modified analogues of brazilin

  • Dimpee Gogoi,
  • Runjun Devi,
  • Pallab Pahari,
  • Bipul Sarma and
  • Sajal Kumar Das

Beilstein J. Org. Chem. 2016, 12, 2816–2822, doi:10.3762/bjoc.12.280

Graphical Abstract
  • group of 5 and/or 9, leading to the formation of a stable 3°carbocation that can undergo further dehydration reactions until full aromatization to the naphthalene ring is achieved. This study would serve to help us to find the real scenario. Finally, in the presence of Lewis/Brønsted acids, substrates 6
  • noticeable changes in the product yields (Table 1, entries 3 and 4). We observed that the reaction efficiency was also dependent on the reaction medium (Table 1, entries 5–7) and toluene appeared to be the best one. Lower yields of (±)-5 were obtained when stronger Brønsted acids like TFA, H2SO4 and TfOH
  • open atmosphere. It is important to mention that, among various acid catalyzed/promoted reactions described in the literature, on many occasions Brønsted acids have appeared as catalysts of choice under metal-free reaction conditions. On the basis of this fact and above investigations, we selected
PDF
Album
Supp Info
Letter
Published 21 Dec 2016

Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

  • Raimondo Maggi,
  • N. Raveendran Shiju,
  • Veronica Santacroce,
  • Giovanni Maestri,
  • Franca Bigi and
  • Gadi Rothenberg

Beilstein J. Org. Chem. 2016, 12, 2173–2180, doi:10.3762/bjoc.12.207

Graphical Abstract
  • levulinic esters [19][20][21][22]. Homogeneous Brønsted acids could catalyse the esterification of levulinic acid in the presence of alcohols and reports on this reactivity date back to the nineties [23]. Although this route could ensure high chemical yields, it still presents a series of drawbacks. In
  • organic Brønsted acids are very few. In particular, Tejero reported that sulfonic acid supported on polymeric resins could catalyse the esterification of LA, providing conversions up to 94% upon warming at 80 °C for 8 hours in the presence of 3 equiv of n-butanol [33]. Melero described the synthesis of
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2016

Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

  • Maurizio Selva,
  • Alvise Perosa,
  • Sandro Guidi and
  • Lisa Cattelan

Beilstein J. Org. Chem. 2016, 12, 1911–1924, doi:10.3762/bjoc.12.181

Graphical Abstract
  • protonation or quaternization of neutral precursors (imidazoles, amines, phosphines, pyridine or sulfides) with Brønsted acids or haloalkanes/dialkylsulfates, respectively. In the next step, a variety of ionic liquids are obtainable by anion exchange, either through direct treatments with Lewis acids or by
PDF
Album
Review
Published 26 Aug 2016

Rearrangements of organic peroxides and related processes

  • Ivan A. Yaremenko,
  • Vera A. Vil’,
  • Dmitry V. Demchuk and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2016, 12, 1647–1748, doi:10.3762/bjoc.12.162

Graphical Abstract
  • % and 9% yields, respectively (Scheme 30) [273]. However, in order to perform the asymmetric oxidation of 3-substituted cyclobutanones 96a–f to the corresponding lactones 97a–f (Table 7) [274], it is necessary to employ chiral Brønsted acids [274][275][276][277], organocatalysts [278][279] or enzymes
PDF
Album
Review
Published 03 Aug 2016

NeoPHOX – a structurally tunable ligand system for asymmetric catalysis

  • Jaroslav Padevět,
  • Marcus G. Schrems,
  • Robin Scheil and
  • Andreas Pfaltz

Beilstein J. Org. Chem. 2016, 12, 1185–1195, doi:10.3762/bjoc.12.114

Graphical Abstract
  • , decreasing in the series t-BuMe2Si > Et3Si > Me3Si. It has been shown that Ir-hydride complexes that are formed as intermediates during hydrogenation are strong Brønsted acids [32], which can cause cleavage of trimethylsilyl ethers under hydrogenation conditions [33]. So partial desilylation liberating a
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

Catalytic asymmetric synthesis of biologically important 3-hydroxyoxindoles: an update

  • Bin Yu,
  • Hui Xing,
  • De-Quan Yu and
  • Hong-Min Liu

Beilstein J. Org. Chem. 2016, 12, 1000–1039, doi:10.3762/bjoc.12.98

Graphical Abstract
  • their characteristics of convertion to vinyliminium species or the delocalized carbocation intermediates in the presence of Lewis or Brønsted acids (LA or BA). In addition to the aforementioned studies on the nucleophilic substitutions, another research focus is the 3-indolylmethanol-based cycloaddition
PDF
Album
Review
Published 18 May 2016

Novel carbocationic rearrangements of 1-styrylpropargyl alcohols

  • Christine Basmadjian,
  • Fan Zhang and
  • Laurent Désaubry

Beilstein J. Org. Chem. 2015, 11, 1017–1022, doi:10.3762/bjoc.11.114

Graphical Abstract
  • isolated as traces (5%). To confirm that the reaction is catalyzed by an acid, we changed its nature and tested two Brønsted acids. With F3CSO3H (entry 8, Table 2), we obtained comparable yields with 36% of cyclopentenone 22 and 12% of furan 23. When using a weaker acid such as acetic acid (entry 9, Table
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Efficient deprotection of F-BODIPY derivatives: removal of BF2 using Brønsted acids

  • Mingfeng Yu,
  • Joseph K.-H. Wong,
  • Cyril Tang,
  • Peter Turner,
  • Matthew H. Todd and
  • Peter J. Rutledge

Beilstein J. Org. Chem. 2015, 11, 37–41, doi:10.3762/bjoc.11.6

Graphical Abstract
  • 10.3762/bjoc.11.6 Abstract The effective and efficient removal of the BF2 moiety from F-BODIPY derivatives has been achieved using two common Brønsted acids; treatment with trifluoroacetic acid (TFA) or methanolic hydrogen chloride (HCl) followed by work-up with Ambersep® 900 resin (hydroxide form
  • ) effects this conversion in near-quantitative yields. Compared to existing methods, these conditions are relatively mild and operationally simple, requiring only reaction at room temperature for six hours (TFA) or overnight (HCl). Keywords: Brønsted acids; click chemistry; deboration; dipyrrins; F-BODIPYs
  • using two common Brønsted acids: treatment with trifluoroacetic acid (TFA) or methanolic hydrogen chloride (HCl) at room temperature followed by work-up with Ambersep® 900 resin (hydroxide form) achieves this conversion in near-quantitative yields. We have an ongoing interest in triazolyl-cyclam
PDF
Album
Supp Info
Letter
Published 09 Jan 2015

Sequential decarboxylative azide–alkyne cycloaddition and dehydrogenative coupling reactions: one-pot synthesis of polycyclic fused triazoles

  • Kuppusamy Bharathimohan,
  • Thanasekaran Ponpandian,
  • A. Jafar Ahamed and
  • Nattamai Bhuvanesh

Beilstein J. Org. Chem. 2014, 10, 3031–3037, doi:10.3762/bjoc.10.321

Graphical Abstract
  • ∙H2O, Cu(OAc)2∙H2O and Cu(NO3)2∙3H2O instead of CuSO4∙5H2O (Table 1, entries 2–4b). Among the Cu2+ salts tested, Cu(OAc)2∙H2O was found to be better than others and yielded 10% of 4a (Table 1, entries 3–4b). In the literature, we found that additives, such as Brønsted acids, enhance the acidity of the
PDF
Album
Supp Info
Letter
Published 17 Dec 2014

The unexpected influence of aryl substituents in N-aryl-3-oxobutanamides on the behavior of their multicomponent reactions with 5-amino-3-methylisoxazole and salicylaldehyde

  • Volodymyr V. Tkachenko,
  • Elena A. Muravyova,
  • Sergey M. Desenko,
  • Oleg V. Shishkin,
  • Svetlana V. Shishkina,
  • Dmytro O. Sysoiev,
  • Thomas J. J. Müller and
  • Valentin A. Chebanov

Beilstein J. Org. Chem. 2014, 10, 3019–3030, doi:10.3762/bjoc.10.320

Graphical Abstract
  • yields of the final compounds as well as the reaction rate. Several Lewis and Brønsted acids have been scanned as catalysts for this reaction. The results of the catalyst system selection for this reaction under stirring at room temperature are summarized in Table 1 and Table 2. Ytterbium triflate (5 mol
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2014

Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction

  • Chun-Huan Jiang,
  • Xiantao Lei,
  • Le Zhen,
  • Hong-Jin Du,
  • Xiaoan Wen,
  • Qing-Long Xu and
  • Hongbin Sun

Beilstein J. Org. Chem. 2014, 10, 2892–2896, doi:10.3762/bjoc.10.306

Graphical Abstract
  • for 24 h gave the trisubstituted amine 3a in 50% yield (entry 1, Table 1). Encouraged by this result, we screened readily available Brønsted and Lewis acids (Table 1). Except the Lewis acid AlCl3, other strong Brønsted acids and common Lewis acids could be used as the catalyst in this reaction
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2014

Facile synthesis of 1H-imidazo[1,2-b]pyrazoles via a sequential one-pot synthetic approach

  • András Demjén,
  • Márió Gyuris,
  • János Wölfling,
  • László G. Puskás and
  • Iván Kanizsai

Beilstein J. Org. Chem. 2014, 10, 2338–2344, doi:10.3762/bjoc.10.243

Graphical Abstract
  • of either a Brønsted or a Lewis acid catalyst (Table 1, entry 1). However, the use of Lewis acids, such as indium(III) salts or TMSCl, improved the reaction rate, with yields up to 67% (Table 1, entries 2–4). The GBB-3CR catalysed by Brønsted acids, including PTSA or HClO4, led to similar yields as
PDF
Album
Supp Info
Full Research Paper
Published 08 Oct 2014

A new approach for the synthesis of bisindoles through AgOTf as catalyst

  • Jorge Beltrá,
  • M. Concepción Gimeno and
  • Raquel P. Herrera

Beilstein J. Org. Chem. 2014, 10, 2206–2214, doi:10.3762/bjoc.10.228

Graphical Abstract
  • , since the catalytic ability of these species has been previously invoked by other authors, when metal triflates are used as catalysts in other reactions [54]. Moreover, Brønsted acids have also been employed as promoters of this process [26]. We have performed a comparative study of the reaction between
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2014

Synthesis of a bifunctional cytidine derivative and its conjugation to RNA for in vitro selection of a cytidine deaminase ribozyme

  • Nico Rublack and
  • Sabine Müller

Beilstein J. Org. Chem. 2014, 10, 1906–1913, doi:10.3762/bjoc.10.198

Graphical Abstract
  • ], the 5'-OH group of tris-silylated nucleosides can be selectively removed by treatment with a THF/TFA/H2O mix (4:1:1, v/v/v) at 0 °C. Since cleavage of Boc-groups requires strong Brønsted acids [37][38][39], we varied the protocol of Zhu et al. with respect to the acid concentration and to reaction
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2014

Synthesis of rigid p-terphenyl-linked carbohydrate mimetics

  • Maja Kandziora and
  • Hans-Ulrich Reissig

Beilstein J. Org. Chem. 2014, 10, 1749–1758, doi:10.3762/bjoc.10.182

Graphical Abstract
  • )benzene by column chromatography or distillation. Besides, Brønsted acids like trifluoroacetic acid, p-toluenesulfonic acid, that are usually used to generate ketals, or weaker acids like pyridine/hydrogen fluoride led to a side product [35]. The Lewis acid-promoted rearrangement of 1,3-dioxolanyl
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2014

On the mechanism of photocatalytic reactions with eosin Y

  • Michal Majek,
  • Fabiana Filace and
  • Axel Jacobi von Wangelin

Beilstein J. Org. Chem. 2014, 10, 981–989, doi:10.3762/bjoc.10.97

Graphical Abstract
  • acidity of most Brønsted acids in DMSO [28]. These observations lead to the conclusion that photoredox reactions catalyzed by eosin Y (or similar organic dyes) cannot be discussed without strict specification of the employed form of the dye and the reaction conditions. Conclusive mechanistic proposals of
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014

Secondary amine-initiated three-component synthesis of 3,4-dihydropyrimidinones and thiones involving alkynes, aldehydes and thiourea/urea

  • Jie-Ping Wan,
  • Yunfang Lin,
  • Kaikai Hu and
  • Yunyun Liu

Beilstein J. Org. Chem. 2014, 10, 287–292, doi:10.3762/bjoc.10.25

Graphical Abstract
  • demonstrated that 0.5 equiv of piperazine was favorable (Table 1, entries 4–6). Reducing the amount of TMSCl led to a decrease in product yield (Table 1, entry 7). Other Lewis acid or Brønsted acids such as FeCl3 and p-TSA gave no better result for the same reaction (Table 1, entries 8 and 9). In addition, the
PDF
Album
Supp Info
Letter
Published 29 Jan 2014

Synthesis of the reported structure of piperazirum using a nitro-Mannich reaction as the key stereochemical determining step

  • James C. Anderson,
  • Andreas S. Kalogirou,
  • Michael J. Porter and
  • Graham J. Tizzard

Beilstein J. Org. Chem. 2013, 9, 1737–1744, doi:10.3762/bjoc.9.200

Graphical Abstract
  • . Enantioselective reactions have been controlled by asymmetric metal-centred Lewis acids; chiral hydrogen bond donors, in particular by the use of asymmetric thiourea organocatalysts, chiral Brønsted acids, phase-transfer catalysts and Brønsted base catalysts [3][15][25][26][27][28][29][30][31][32][33][34][35][36
PDF
Album
Supp Info
Letter
Published 23 Aug 2013

Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinyl carboxylic acids via a radical process

  • Jincan Zhao,
  • Hong Fang,
  • Jianlin Han and
  • Yi Pan

Beilstein J. Org. Chem. 2013, 9, 1718–1723, doi:10.3762/bjoc.9.197

Graphical Abstract
  • reactions. Additionally, metal-free methodologies, which use TBHP, PhI(OAc)2, TBAI, I2 or Lewis/Brønsted acids, have also been employed for cross-dehydrogenative coupling reactions [48][49][50][51][52][53][54][55][56][57]. Owing to the general low reactivity of cycloalkane C(sp3)–H bonds, the direct
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2013

Thiourea-catalyzed Diels–Alder reaction of a naphthoquinone monoketal dienophile

  • Carsten S. Kramer and
  • Stefan Bräse

Beilstein J. Org. Chem. 2013, 9, 1414–1418, doi:10.3762/bjoc.9.158

Graphical Abstract
  • carbenes, guanidines, thioureas, amidinium ions, diols, and Brønsted acids showed their value to give densely functionalized Diels–Alder products in high selectivities [1][2][3][4][5][6][7]. In addition, some organocatalysts enabled even the formation of quaternary centers in Diels–Alder cycloadditions [3
PDF
Album
Letter
Published 12 Jul 2013

Mild and efficient cyanuric chloride catalyzed Pictet–Spengler reaction

  • Ashish Sharma,
  • Mrityunjay Singh,
  • Nitya Nand Rai and
  • Devesh Sawant

Beilstein J. Org. Chem. 2013, 9, 1235–1242, doi:10.3762/bjoc.9.140

Graphical Abstract
  • driving force of the reaction [1]. The Pictet–Spengler reaction is catalyzed by Brønsted acids, as they convert the intermediate imine to the corresponding iminium ion, thus making it more electrophilic [18][19][20][21][22]. Conventionally, TFA [18], HCl [20], H2SO4 [21] and p-TsOH [22] are employed as
  • Brønsted acids. However, recently several other aprotic or Lewis acids, such as Yb(OTf)3 [23][24][25], AuCl3/AgOTf [26], Me3SiCl [27][28], BF3·Et2O [29], iodine [30], zeolite [31] and enzymes [32][33][34], have been used for carrying out the Pictet–Spengler reaction. Though the Pictet–Spengler reaction has
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2013

Efficient synthesis of β’-amino-α,β-unsaturated ketones

  • Isabelle Abrunhosa-Thomas,
  • Aurélie Plas,
  • Nishanth Kandepedu,
  • Pierre Chalard and
  • Yves Troin

Beilstein J. Org. Chem. 2013, 9, 486–495, doi:10.3762/bjoc.9.52

Graphical Abstract
  • under different protocols in which the stereoselectivity of the reaction can be introduced through the use of a chiral catalyst [9][10] (Lewis acid, Brønsted acids, L-proline, Cinchona alkaloids derivatives, thioureas, etc.), or by the addition of chiral amines to α,β-unsaturated esters [11][12] or the
PDF
Album
Supp Info
Letter
Published 06 Mar 2013

Tandem aldehyde–alkyne–amine coupling/cycloisomerization: A new synthesis of coumarins

  • Maddi Sridhar Reddy,
  • Nuligonda Thirupathi and
  • Madala Haribabu

Beilstein J. Org. Chem. 2013, 9, 180–184, doi:10.3762/bjoc.9.21

Graphical Abstract
  • transition-metal catalysts (based on gold, mercury, platinum, silver, etc.), Brønsted acids and electrophilic iodine sources (I2, ICl, NIS) have been used for the transformation. If one of the partners in A3 coupling has any nucleophile for concomitant electrophilic cyclization on the alkyne group in the A3
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2013
Other Beilstein-Institut Open Science Activities