Search results

Search for "alkylation" in Full Text gives 600 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • precursor 102 and the complementary aldehyde 103. 3.4 Catellani-type reaction The Catellani reaction involves palladium-norbornene cooperative catalysis to functionalise the ortho- and ipso-positions of aryl halides by alkylation, arylation, amination, acylation, thiolation, etc. [63]. Della Ca' et al. [64
  • (Scheme 32). Yao et al. [75] reported the reaction of 1a with aryl halides 140 and 141 to afford N-aryldibenzo[b,f]azepines 142 in good to excellent yields. N-Alkylation of the 5H-dibenzo[b,f]azepine (1a) scaffold is a common point of functionalisation of 1a and the dihydro derivative, 2a. Indeed, the
  • first reported synthesis of imipramine (3) by Schindler and Häfliger [76] proceeded by alkylation of 2a by alkyl halides. Selected N-alkylations of 1a and 2a are included in Scheme 33. N-Allylation of 1a or 2a with allyl bromide (143) can be achieved by a base-promoted substitution reaction (Scheme 33A
PDF
Album
Review
Published 22 May 2023

Synthesis of medium and large phostams, phostones, and phostines

  • Jiaxi Xu

Beilstein J. Org. Chem. 2023, 19, 687–699, doi:10.3762/bjoc.19.50

Graphical Abstract
  • . Allyl benzyl ((4-allyl-2-(4-methylphenyl)benzo[b]thiophen-3-yl)methyl)phosphonate (30) was prepared in 75% yield from benzyl hydrogen ((4-allyl-2-(4-methylphenyl)benzo[b]thiophen-3-yl)methyl)phosphonate (29) and allyl bromide in the presence of Cs2CO3 in acetonitrile at 80 °C for 2.5–3 h via alkylation
  • -methylphenyl)benzo[b]thiophen-3-yl)methyl)phosphonate (34) was prepared in 70% yield from benzyl hydrogen ((4-allyl-2-(4-methylphenyl)benzo[b]thiophen-3-yl)methyl)phosphonate (29) and but-3-enyl bromide in the presence of Cs2CO3 in acetonitrile at 80 °C for 2.5–3 h via alkylation. It was cyclized via a RCM
  • derivatives were synthesized. Benzyl ((4-chloro-6-(4-methylphenyl)thieno[2,3-d]pyrimidin-5-yl)methyl) allylphosphonate (44) was prepared in 87% yield from 4-chloro-3-(chloromethyl)-2-(4-methylphenyl)benzo[b]thiophene (42) and benzyl hydrogen allylphosphonate (43) via alkylation in the presence of Cs2CO3 in
PDF
Album
Review
Published 15 May 2023

Photocatalytic sequential C–H functionalization expediting acetoxymalonylation of imidazo heterocycles

  • Deepak Singh,
  • Shyamal Pramanik and
  • Soumitra Maity

Beilstein J. Org. Chem. 2023, 19, 666–673, doi:10.3762/bjoc.19.48

Graphical Abstract
  • functionalization is still challenging for chemists to combine a C(sp3) carbon of incoming functionalities and C(sp2) carbon of the IP core. The direct C-3 alkylation of imidazopyridines using active malonates and related moieties has been achieved by different routes [17][18][19][20]. However, these reactions rely
  • either on harsh reaction conditions or require the preactivation of substrates, which limits their synthetic efficiency. A photocatalytic quaternary C-3 alkylation has also been reported recently (Scheme 1A) [21][22]. During the course of our study, the Wu group reported a solvent-controlled
PDF
Album
Supp Info
Letter
Published 12 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • developed a copper/Rev-Josiphos-catalyzed asymmetric conjugate addition of Grignard reagents to 2-methylcyclopentenone (78), which provided 2,3-disubstituted cyclopentanones in high yields and enantiomeric purities [53]. The one-pot alkylation reaction of the in situ formed magnesium enolate with alkylating
  • synthesis of (+)-artemisinin (Scheme 55) [102]. Using the commercially available and cheap cyclohexenone 1 as starting material, they have demonstrated an economic synthesis plan in only five steps. In the first step, the Cu-catalyzed conjugate addition of Me2Zn is followed by alkylation with 1-bromobut-2
  • addition to cyclohexenone 1, followed by the trapping of the Mg enolate with ethyl cyanoacetate (221). Consequent α-alkylation resulted in the multifunctionalized product 223 in 61% yield (Scheme 58). Natural products with complex multicyclic structures lacking functional groups (lack of oxygenation) are
PDF
Album
Review
Published 04 May 2023

C3-Alkylation of furfural derivatives by continuous flow homogeneous catalysis

  • Grédy Kiala Kinkutu,
  • Catherine Louis,
  • Myriam Roy,
  • Juliette Blanchard and
  • Julie Oble

Beilstein J. Org. Chem. 2023, 19, 582–592, doi:10.3762/bjoc.19.43

Graphical Abstract
  • develop a continuous flow process specifically for the C3-alkylation of furfural (Murai reaction). The transposition of a batch process to a continuous flow process is often costly in terms of time and reagents. Therefore, we chose to proceed in two steps: the reaction conditions were first optimized
  • changing the redox state of the aldehyde function, we have developed a number of directed Ru(0)-catalyzed C3-functionalizations of furfurylimines, such as alkylation [21], arylation [22], alkenylation [23] and acylation [24], as well as an Ir-catalyzed directed C3-silylation (Scheme 1a) [25]. These batch
  • -situ imine formation is currently impossible with catalytic or stoichiometric amounts of amine due to decarbonylation of furfural under the reaction conditions [21]. We thus present here an adaptation of our Ru(0)-catalyzed C3-alkylation strategy of furfural derivatives to a continuous flow system
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2023

Direct C2–H alkylation of indoles driven by the photochemical activity of halogen-bonded complexes

  • Martina Mamone,
  • Giuseppe Gentile,
  • Jacopo Dosso,
  • Maurizio Prato and
  • Giacomo Filippini

Beilstein J. Org. Chem. 2023, 19, 575–581, doi:10.3762/bjoc.19.42

Graphical Abstract
  • ). Mechanistic investigations are reported. These studies provide convincing evidences for the photochemical formation of reactive open-shell species. Keywords: alkylation; EDA complex; halogens; indoles; photochemistry; Findings Direct replacement of carbon–hydrogen (C–H) bonds with new carbon–carbon (C–C
  • photochemical alkylation, leading to the products 3e–i (up to 96% yield). It is worth noting that derivatives 3e–g were isolated in moderate yields as single regioisomer since the alkylation step took place exclusively in position 2 of the starting indoles. As limitation, we observed that indole-3
  • -carboxaldehyde (1g) was not a suitable substrate for this transformation. Conclusion In conclusion, we reported a novel photochemical method for the direct C–H alkylation of indoles with α-iodosulfones. This approach exploits the photochemical activity of halogen-bonded EDA complexes, formed between α
PDF
Album
Supp Info
Letter
Published 27 Apr 2023

A new oxidatively stable ligand for the chiral functionalization of amino acids in Ni(II)–Schiff base complexes

  • Alena V. Dmitrieva,
  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2023, 19, 566–574, doi:10.3762/bjoc.19.41

Graphical Abstract
  • -Cl [21], 3,4-di-Cl [21][22], 2/3/4-F [23]) were inserted in the N-benzyl moiety as well as in the aromatic rings of the benzophenone fragment [24][25][26] (selected examples are given in Scheme 1). Insertion of halogen atoms increased enantioselectivity, e.g., in alkylation reactions [27][28
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • final ring-opened adduct 37. Copper-catalyzed reactions In 2009, Pineschi and co-workers explored the Cu-catalyzed rearrangement/allylic alkylation of 2,3-diazabicyclo[2.2.1]heptenes 47 with Grignard reagents 48 (Scheme 8) [41]. The reaction is thought to proceed via the Lewis acid-catalyzed [3,4
PDF
Album
Review
Published 24 Apr 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • hydroxybenzaldehyde 80 into the corresponding acetal followed by Ullmann-type coupling with 52, led to the formation of diaryl ether 83. Subsequent Corey–Fuchs reaction [49] and in situ alkylation led to formation of the propargylic alcohol 85. Deprotection of the aldehyde followed by chain elongation through the
PDF
Album
Review
Published 29 Mar 2023

Synthesis, α-mannosidase inhibition studies and molecular modeling of 1,4-imino-ᴅ-lyxitols and their C-5-altered N-arylalkyl derivatives

  • Martin Kalník,
  • Sergej Šesták,
  • Juraj Kóňa,
  • Maroš Bella and
  • Monika Poláková

Beilstein J. Org. Chem. 2023, 19, 282–293, doi:10.3762/bjoc.19.24

Graphical Abstract
  • iminosugars can be achieved by an alkylation of the endocyclic nitrogen. This reduces their high hydrophilicity which in turn may have a positive impact on the interactions with the hydrophobic pocket of the GMII active site. For example, N-benzylation of DIM afforded a slightly more potent GMII inhibitor
  • than parent DIM [15]. Also, screening of a large library of N-alkyl and N-arylalkyl DIMs revealed that they are less effective inhibitors of JBMan than DIM, indicating that N-alkylation might lead to better selectivity profiles. However, this library has not been assayed for GMII and LM, therefore the
  • -1 further enhanced the potency and led to highly selective nanomolar GMII inhibitors [14] (Figure 1). Our first investigations were focused on the development of selective GMII inhibitors derived from 1,4-imino-1,4-dideoxy-ʟ-lyxitol. Initially, we modified this core by an alkylation of the
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • steps from accessible methylcyclopentenone 16 (Scheme 2). The sequence included a Mukaiyama–Michael reaction with silyl enol 15 followed by a Tsuji alkylation. With diene 17 in hands, the RCM reaction was performed by addition of G-II catalyst and furnished the expected C5-C8 bicyclic framework 18 in 95
PDF
Album
Review
Published 03 Mar 2023

Friedel–Crafts acylation of benzene derivatives in tunable aryl alkyl ionic liquids (TAAILs)

  • Swantje Lerch,
  • Stefan Fritsch and
  • Thomas Strassner

Beilstein J. Org. Chem. 2023, 19, 212–216, doi:10.3762/bjoc.19.20

Graphical Abstract
  • derivatives (see Scheme 1). First, the arylimidazole is obtained through a ring closing reaction using an aniline derivative, glyoxal, formaldehyde and ammonium chloride. The following alkylation with hexyl bromide yields the bromido ionic liquid. TAAILs 1–6 are then formed by an anion exchange reaction using
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • , whereas when the reaction was performed in THF alone (at 20 °C), the yield improved significantly (92%, Scheme 3). The efficient iron-mediated alkylation of dienyl phosphates, proceeding with an excellent retention of stereochemistry, was then successfully used in the introduction of the alkyl–alkenyl
  • pheromone 4 can be obtained in a convergent total synthesis with a key iron-mediated cross coupling starting from sorbic acid and a commercially available α,ω-chloroalcohol in 4 steps, with an overall 38% yield. This method can also be used for the alkylation of dienyl bromides by classic aliphatic or
PDF
Album
Perspective
Published 14 Feb 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • reverse (3 + 2) cycloaddition which expels a heteroatomic anion via a β-elimination-type mechanism somewhat similar to a classical Grob-type fragmentation. Similarly, 1,3-dithiolanes undergo fragmentation at relatively low reaction temperatures, limiting their synthetic application to alkylation with
  • dienophiles 7 and 27. 4 Alkylation chemistry of 1,4-dithianes and 1,4-dithiins: stereocontrolled synthesis of Z-alkenes As mentioned in chapter 2 of this review, Palumbo and co-workers found that 5,6-dihydro-1,4-dithiins are relatively resistant to β-elimination in their lithiated form (Scheme 6e), and this
  • opens up options for Corey–Seebach-type alkylation reactivity with a wider range of electrophiles. The method is demonstrated by the smooth lithiation and subsequent alkylation of the acetophenone-derived dithiin 50 (Scheme 10a) [42]. Palumbo’s elegant overall approach to dihydrodithiin-mediated
PDF
Album
Review
Published 02 Feb 2023

Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles

  • Bilge Banu Yagci,
  • Selin Ezgi Donmez,
  • Onur Şahin and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2023, 19, 66–77, doi:10.3762/bjoc.19.6

Graphical Abstract
  • starting from the commercially available triethyl phosphonoacetate (14, Scheme 2a). The deprotonation of 14 with NaH followed by alkylation using (iodomethyl)trimethylsilane afforded phosphonate 15 in 60% yield (7.0 g). Its subsequent Horner–Wadsworth–Emmons reaction with isovaleraldehyde resulted in the
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2023

NaI/PPh3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles

  • Dan Liu,
  • Yue Zhao and
  • Frederic W. Patureau

Beilstein J. Org. Chem. 2023, 19, 57–65, doi:10.3762/bjoc.19.5

Graphical Abstract
  • limited substrate scopes (Scheme 1a). With the rapid development of sustainable chemistry, developing low-cost and transition-metal-free photocatalytic methods has become a strategic priority. In 2019 [54], the groups of Fu and Shang pioneered the photocatalytic decarboxylative alkylation of silyl enol
PDF
Album
Supp Info
Letter
Published 16 Jan 2023

Two-step continuous-flow synthesis of 6-membered cyclic iodonium salts via anodic oxidation

  • Julian Spils,
  • Thomas Wirth and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2023, 19, 27–32, doi:10.3762/bjoc.19.2

Graphical Abstract
  • Friedel–Crafts alkylation followed by an anodic oxidative cyclization yielded a defined set of cyclic iodonium salts in a highly substrate-dependent yield. Keywords: electrochemistry; flow chemistry; hypervalent compounds; iodine; oxidation; Introduction Hypervalent iodine compounds (HVI) are well
  • . Conclusion In summary, we have developed the first multi-step continuous-flow procedure for the generation of cyclic six-membered diaryliodonium salts. Starting from easily accessible benzyl acetates we were able to combine a Friedel–Crafts alkylation with a subsequent anodic oxidative cyclization in flow
PDF
Album
Supp Info
Letter
Published 03 Jan 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • -fused tetracycle instead, were reported to possess NF-kB-inhibitory activity and anticancer activity against NCI H-929 cancer cell lines (Scheme 6) [39]. In 2021 Lu’s group reported the total synthesis of members of both meroterpenoid families based on a highly chemoselective α-alkylation in the
  • thermodynamic position of a Wieland−Miescher ketone derivative 68 with benzyl bromide 69. Despite the challenging O- and C7-alkylations that required suppression, the desired C9-alkylation was achieved in 72% yield under thermodynamically controlled conditions (t-BuOK in THF at −40 °C). This coupled the terpene
  • 167 at 390 nm in the presence of NaHCO3 in CH3CN/t-BuOH, 5:1 to provide 168 in 55% yield (Scheme 14) [91]. Alkylation of the tetracycle, followed by epimerization of the C2 center and radical deoxygenation, or alternatively SN2 etherification, provided the common scaffold 170. The latter can serve as
PDF
Album
Review
Published 02 Jan 2023

Inline purification in continuous flow synthesis – opportunities and challenges

  • Jorge García-Lacuna and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 1720–1740, doi:10.3762/bjoc.18.182

Graphical Abstract
  • concerned the separation of an O-alkylation product where a PTC was needed as part of the process prior to the next synthetic step [56]. Interestingly, for small scale examples anisole worked well as a solvent for both telescoped reactions. However, in a long run a gravity separator was favored because of
  • membrane fouling after 1 hour. An automated fill-empty gravity separator was also used for the separation of phases in a scale up of an N-alkylation reaction reported by Eli-Lilly as an alternative to the Zaiput membranes that were better used for rapid screening of conditions [57]. The use of these
  • -alkylation reaction which includes quenching, phase separation, and final filtration. After a thorough study of conditions to avoid clogging, a long run processing >100 g was achieved, giving the product in 95% yield and >99% purity [116]. The same authors also reported the crystallization of a simple
PDF
Album
Perspective
Published 16 Dec 2022

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • synthesis, the authors followed the strategy developed previously by Marinovi’s group to form the bicyclo[3.2.1]octane moiety [39]. The synthesis started from 64 with a one-pot Birch reduction/alkylation with vinyl bromide 65, affording 66 in 68% yield over two steps. Next the construction of the bicylo
PDF
Album
Review
Published 12 Dec 2022

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • reactions with elemental sulfur [23][24][25], resulting in the generation of non-enolizable imidazole-2-thiones. At first, the alkylation of 2-unsubstituted imidazole N-oxides 40 took place in the presence of an equimolar quantity of benzyl bromide in CH2Cl2 at rt providing the (N-benzyloxy)imidazolium
PDF
Album
Review
Published 22 Nov 2022

1,4,6,10-Tetraazaadamantanes (TAADs) with N-amino groups: synthesis and formation of boron chelates and host–guest complexes

  • Artem N. Semakin,
  • Ivan S. Golovanov,
  • Yulia V. Nelyubina and
  • Alexey Yu. Sukhorukov

Beilstein J. Org. Chem. 2022, 18, 1424–1434, doi:10.3762/bjoc.18.148

Graphical Abstract
  • triple alkylation of ammonia with α-halohydrazones 9a–e following a protocol previously developed by us [35] (Scheme 2a). Halohydrazones 9a–e were prepared by condensation of readily available chloroacetone or bromoacetaldehyde (generated from the corresponding diethyl acetal) with hydrazides or
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2022

Synthesis of C6-modified mannose 1-phosphates and evaluation of derived sugar nucleotides against GDP-mannose dehydrogenase

  • Sanaz Ahmadipour,
  • Alice J. C. Wahart,
  • Jonathan P. Dolan,
  • Laura Beswick,
  • Chris S. Hawes,
  • Robert A. Field and
  • Gavin J. Miller

Beilstein J. Org. Chem. 2022, 18, 1379–1384, doi:10.3762/bjoc.18.142

Graphical Abstract
  • active site thiohemiaminal (amine to imine oxidation) or disulfide formation, respectively. Additionally, C6–Cl derivative 9 could probe cysteine alkylation. Reported herein is our exploration of this synthesis and the evaluation of GDP 6-chloro-6-deoxy-ᴅ-mannose 18 against GMD. Results and Discussion
  • the GMD-19 incubation time to overnight, followed by protein-MS analysis, but found no evidence of sugar nucleotide–protein conjugation; by contrast a positive control treating GMD with iodoacetamide showed multiple alkylation of the protein (see Figure S4 in Supporting Information Information File 1
  • accepted. Evaluation of GDP 6-chloro-6-deoxy-ᴅ-mannose suggests that the ligand can bind to GMD, but that targeting inhibitive S-alkylation of an sp3-hybridised C6 electrophilic probe is ineffective here. a) Proposed oxidative pathway for provision of GDP-ManA 5 from GDP-Man 1, C6 stereochemistry of 3 is
PDF
Album
Supp Info
Letter
Published 30 Sep 2022

Ionic multiresonant thermally activated delayed fluorescence emitters for light emitting electrochemical cells

  • Merve Karaman,
  • Abhishek Kumar Gupta,
  • Subeesh Madayanad Suresh,
  • Tomas Matulaitis,
  • Lorenzo Mardegan,
  • Daniel Tordera,
  • Henk J. Bolink,
  • Sen Wu,
  • Stuart Warriner,
  • Ifor D. Samuel and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2022, 18, 1311–1321, doi:10.3762/bjoc.18.136

Graphical Abstract
  • -dibromobutane in moderate yield, followed by a second alkylation step with 1-methylimidazole in very good yield. DiKTa-OBuIm was isolated as its hexafluorophosphate salt following anion metathesis with NH4PF6. DiKTa-DPA-OBuIm was obtained also in three steps at 35% overall yield from compound 4 using a similar
PDF
Album
Supp Info
Full Research Paper
Published 22 Sep 2022

Ferrocenoyl-adenines: substituent effects on regioselective acylation

  • Mateja Toma,
  • Gabrijel Zubčić,
  • Jasmina Lapić,
  • Senka Djaković,
  • Davor Šakić and
  • Valerije Vrček

Beilstein J. Org. Chem. 2022, 18, 1270–1277, doi:10.3762/bjoc.18.133

Graphical Abstract
  • both isomers is, therefore, a competitive process. This confirms that the adenine anion behaves as an ambident nucleophile with two competing reaction centers at the N7- and N9-position [26]. It is known that acylation [25] or alkylation [27][28][29] of adenine is rarely regiospecific, and mixtures of
  • N7- and N9-isomers are usually obtained. In some cases, the acylation of adenine may also occur at the exo-amino group (N6) [30][31]. In general, the literature on the regioselectivity of alkylation of adenines/purines is more abundant, includes an array of reaction conditions (base, solvent
  • in the alkylation of purines were reported earlier [40]. Now, we demonstrate for the first time that similar effect is operative in the acylation of purines. It is evident from the results in Table 1 that the N9/N7 ratio increases with the increasing size of the substituent at the exocyclic amino
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2022
Other Beilstein-Institut Open Science Activities