Search results

Search for "photocatalyst" in Full Text gives 137 result(s) in Beilstein Journal of Organic Chemistry.

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

Recent advances and perspectives in ruthenium-catalyzed cyanation reactions

  • Thaipparambil Aneeja,
  • Cheriya Mukkolakkal Abdulla Afsina,
  • Padinjare Veetil Saranya and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 37–52, doi:10.3762/bjoc.18.4

Graphical Abstract
  • 2021. Keywords: cyanation; nitriles; photocatalyst; ruthenium; tertiary amines; Introduction Nitriles are a major class of organic compounds having wide significance in materials science, agrochemical and pharmaceutical industry [1]. They are the privileged compounds finding broad applications in
  • oxidative cyanation of aza-Baylis–Hillman adducts. Synthesis of 1° alkyl nitriles using [Ru(bpy)3](PF6)2 as the photocatalyst. Synthesis of 2° and 3° alkyl nitriles using [Ru(bpy)3](PF6)2 as the photocatalyst. Photoredox cross coupling reaction. Synthesis of α-amino nitriles from amines via a one-pot
PDF
Album
Review
Published 04 Jan 2022

DABCO-promoted photocatalytic C–H functionalization of aldehydes

  • Bruno Maia da Silva Santos,
  • Mariana dos Santos Dupim,
  • Cauê Paula de Souza,
  • Thiago Messias Cardozo and
  • Fernanda Gadini Finelli

Beilstein J. Org. Chem. 2021, 17, 2959–2967, doi:10.3762/bjoc.17.205

Graphical Abstract
  • -bromobenzonitrile (2) under different amounts of DABCO. Two inorganic bases were tested: potassium carbonate (K2CO3) and sodium hydrogen carbonate (NaHCO3). Reactions in the absence of inorganic bases were also performed (Table 1). An excited iridium photocatalyst (Ir[dF(CF3)ppy]2(dtbbpy)PF6) was used for the one
  • and 13), there was a significant improvement in the yield when using NaHCO3 (Table 1, entry 5), even when compared to the results obtained with K2CO3. No product was observed when the reaction was performed in the dark (Table 1, entry 7) or in the absence of the iridium photocatalyst (Table 1, entry 8
  • radical hydrogen abstraction may be possible under similar conditions [31][32]. However, even small amounts of DABCO (Table 1, entry 1) seem to completely shut down this alternative path, probably due to a fast quenching of the excited state photocatalyst, leading to no mechanism competition under the
PDF
Album
Supp Info
Letter
Published 21 Dec 2021

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
PDF
Album
Review
Published 07 Dec 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • the photocatalyst RuII is irradiated by light, an electron is transferred from the frontier metal d orbital (t2g orbital) to the ligand-centered π* orbital (RuII*). A metal-to-ligand charge transfer (MLCT) results in the excited singlet state. Through rapid intersystem crossing (ISC), the singlet
  • thiocyanate to generate 4-alkyl/aryl-2-aminothiazoles. Mechanistic experiments demonstrated that the photocatalyst formed in situ from Cu(OAc)2 and ammonium thiocyanate promoted the intermolecular cyclization (Scheme 7). 3.2 Difunctionalization of alkenes The 1,2-difunctionalization of alkenes is a versatile
  • absence of organic halide, the copper salts catalyzed the hydroamination of the alkene [59]. Mechanistic studies showed that the copper–amido complex coordinated with alkenes, which then acted as a primary photocatalyst. After light irradiation, the excited alkene–copper–amido species offered a benzyl
PDF
Album
Review
Published 12 Oct 2021

Exfoliated black phosphorous-mediated CuAAC chemistry for organic and macromolecular synthesis under white LED and near-IR irradiation

  • Azra Kocaarslan,
  • Zafer Eroglu,
  • Önder Metin and
  • Yusuf Yagci

Beilstein J. Org. Chem. 2021, 17, 2477–2487, doi:10.3762/bjoc.17.164

Graphical Abstract
  • molecular properties of the intermediates and final products were evaluated by spectral and chromatographic analyses. Keywords: black phosphorus; click chemistry; heterogeneous photocatalyst; near infrared; phosphorene; Introduction For the last decade, click chemistry has been recognized as an
  • sunlight, especially in the NIR region [28][29]. In particular, the development of new photocatalyst systems that absorb the incident light from the sun at much longer wavelengths have aroused widespread interest [30][31][32][33]. However, the most of the NIR photocatalysts applied exhibit relatively low
  • black phosphorus (BP), the most stable allotrope of phosphorus, has been shown as a highly efficient photocatalyst possessing superior features in many respects [36][37]. BP, a vital semiconductor 2D material with excellent physicochemical properties such as high carrier mobility, tunable optical
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • developments, which enables a diverse range of previously inaccessible organic transformations in milder reaction conditions [31][32][33][34][35][36][37][38][39][40]. Here, by absorbing visible light, a photocatalyst can function as a single-electron redox mediator through an oxidative or reductive quenching
  • cycle (Figure 1), thereby facilitating redox-neutral transformations in the absence of stoichiometric oxidants/reductants. Given the tendency of nickel to mediate the reactions via Ni(0), Ni(I), Ni(II), and Ni(III) intermediates by both giving and accepting a single electron from a photocatalyst or
  • , MacMillan and co-workers demonstrated an inspiring C(sp3)‒H arylation of dimethylaniline (1a) with a variety of aryl halides using the photoredox nickel catalysis [53]. Here, the combination of the iridium photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 and the commercially available nickel catalyst NiCl2·glyme
PDF
Album
Review
Published 31 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • this specific metal are highly desirable. Titanium is well known to be used as titanium dioxide, a powerful photocatalyst present in inks [61][62] and sunscreens [63][64]. As a catalyst, it can be used, for example, in polymerization methods to synthesize polypropylene [65]. With regard to C–H
  • for the allylation of aldehydes promoted by a dual catalytic system comprising CrCl3 and an iridium-based photocatalyst that was recently developed by Schwarz and co-workers [119]. Similar conditions were further employed to synthesize monoprotected 1,2-homoallylic diols from aldehydes and silyl and
  • are crucial. In 2018, Ackermann and co-workers described a novel room temperature C–H arylation by using a continuous visible light photo-flow technique, allied with a manganese photocatalyst CpMn(CO)3 [142]. The new flow protocol enabled the synthesis of several arene- and heterocyclic-based
PDF
Album
Review
Published 30 Jul 2021

Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs

  • Jongwoo Son

Beilstein J. Org. Chem. 2021, 17, 1733–1751, doi:10.3762/bjoc.17.122

Graphical Abstract
  • is also oxidized to Mn(III)/L–N3. Azide radical addition to Mn(II)/L to form Mn(III)/L–N3 was considered as a possible route. Concurrently, the photocatalyst is irradiated by blue LED light to induce hydrogen atom transfer (HAT) at the C–H bond of substrate 12, generating alkyl radicals and enabling
  • C–N3 bond formation to afford 13 via the reaction with Mn(III)/L–N3. The anodic surface oxidizes the radical adjacent to the hydroxy group of the photocatalyst, thereby regenerating it. At the same time, the hydrogen atom abstraction of radical species of photocatalyst by Mn(III)–N3 could not be
PDF
Album
Review
Published 26 Jul 2021

Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones

  • Girish Suresh Yedase,
  • Sumit Kumar,
  • Jessica Stahl,
  • Burkhard König and
  • Veera Reddy Yatham

Beilstein J. Org. Chem. 2021, 17, 1727–1732, doi:10.3762/bjoc.17.121

Graphical Abstract
  • , Universitätstraße 31, D-93053 Regensburg, Germany 10.3762/bjoc.17.121 Abstract We have developed a cerium-photocatalyzed aerobic oxidation of primary and secondary benzylic alcohols to aldehydes and ketones using inexpensive CeCl3·7H2O as photocatalyst and air oxygen as the terminal oxidant. Keywords: alcohol
  • air as the oxidant (Table 1). The best results were found using 10 mol % CeCl3·7H2O as a photocatalyst and 10 mol % of NaHCO3 as a base in CH3CN under blue LED irradiation at 50 °C for 35 h giving compound 2a in 65% isolated yield (Table 1, entry 1). The product formation was reduced upon employing
  • and secondary benzylic alcohols were converted into the corresponding aldehydes and ketones in good to moderate yields using commercially available and inexpensive CeCl3·7H2O as a photocatalyst and air as an oxidant. Mechanistic studies. (A): UV–vis spectra of the CeIV(OBn)Cln complex in CH3CN under
PDF
Album
Supp Info
Letter
Published 23 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • ) [121]. Notably, the organic photocatalyst eosin Y was employed, and the cyclizations proceeded with excellent diastereoselectivity, usually higher than 19:1. When 1,3-ketocarbonyl substrates 100 were employed, the use of a weak Lewis acid (LiBr) was required to accomplish the cyclizations, and no
PDF
Album
Review
Published 07 Jul 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Heterogeneous photocatalytic cyanomethylarylation of alkenes with acetonitrile: synthesis of diverse nitrogenous heterocyclic compounds

  • Guanglong Pan,
  • Qian Yang,
  • Wentao Wang,
  • Yurong Tang and
  • Yunfei Cai

Beilstein J. Org. Chem. 2021, 17, 1171–1180, doi:10.3762/bjoc.17.89

Graphical Abstract
  • .17.89 Abstract A visible light-mediated heterogeneous photocatalytic cyanomethylarylation of alkenes with acetonitrile has been established using K-modified carbon nitride (CN-K) as a recyclable semiconductor photocatalyst. This protocol, employing readily accessible alkyl N-hydroxyphthalimide (NHPI
  • ]. In the last few years, carbon nitride-based heterogeneous photocatalysts have also been utilized for several other radical-initiated synthetic transformations [44][45][46][47][48][49][50][51][52][53][54][55][56]. However, to the best of our knowledge, the application of a CN-based photocatalyst for
  • ). Traditional g-C3N4 exhibited a low catalytic activity for this transformation (Table 1, entry 6). Switching from CN-K to a homogeneous organo photocatalyst such as eosin Y and 4CzIPN, led to lower yields of the desired product (Table 1, entries 7 and 8). The expensive Ru/Ir-based metal complexes gave similar
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2021

Synthetic reactions driven by electron-donor–acceptor (EDA) complexes

  • Zhonglie Yang,
  • Yutong Liu,
  • Kun Cao,
  • Xiaobin Zhang,
  • Hezhong Jiang and
  • Jiahong Li

Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67

Graphical Abstract
  • has attracted more and more chemists and provided new opportunities for synthetic chemistry [8]. Moreover, diverse photocatalyst-free photochemical reactions have been employed to construct carbon–carbon and carbon–heteroatom bonds [9]. Among these methods, the product formations by aid of EDA
  • construction of C–S bonds C–S bonds are commonly present in amino acids, proteins, glycosides, nucleic acids, and other biological macromolecules. In recent years, photocatalyst- and transition-metal strategies have been employed to construct C–S bonds [66][67][68][69]. The C–S bond synthesis via EDA-complex
  • step without any transition-metal catalyst, ligand, or photocatalyst, this method possesses a splendid application prospect. The reaction mechanism is as follows (Scheme 48): Firstly, carbon disulfide combines with N-methylaniline (134) in the presence of Cs2CO3 to form thiolate 136. Thiolate 136 is
PDF
Album
Review
Published 06 Apr 2021

Metal-free visible-light-enabled vicinal trifluoromethyl dithiolation of unactivated alkenes

  • Xiaojuan Li,
  • Qiang Zhang,
  • Weigang Zhang,
  • Jinzhu Ma,
  • Yi Wang and
  • Yi Pan

Beilstein J. Org. Chem. 2021, 17, 551–557, doi:10.3762/bjoc.17.49

Graphical Abstract
  • photocatalyst and KH2PO4 (10 mol %) as the base (Table 1, entry 1). The yield of 4a was not increased when 2 equiv of K2HPO4 were used (Table 1, entry 2) and no difunctionalized product was observed with DMA as the solvent (Table 1, entry 4). The employment of KH2PO4 as base and [Ir(dF(CF3)ppy)2(dtbby)]PF6 as
  • the photocatalyst furnished the product in very low yields (Table 1, entries 3 and 5). The control experiments indicated that 4CzIPN, K2HPO4 or visible-light were indispensable for the reaction to proceed (Table 1, entries 6–8). With the optimized reaction conditions determined, we next examined the
PDF
Album
Supp Info
Full Research Paper
Published 24 Feb 2021

Insight into functionalized-macrocycles-guided supramolecular photocatalysis

  • Minzan Zuo,
  • Krishnasamy Velmurugan,
  • Kaiya Wang,
  • Xueqi Tian and
  • Xiao-Yu Hu

Beilstein J. Org. Chem. 2021, 17, 139–155, doi:10.3762/bjoc.17.15

Graphical Abstract
  • between thiol-functionalized β-CD and oleic acid-protected CdS nanocrystals [29]. These spherical CdS–CD nanoparticles could be employed as a photocatalyst for the dehydrogenation of alcohols to aldehydes (at a low concentration of the reactant of 1 mM, ≥92% selectivity) or diols (at a high concentration
  • of the reactant of 300 mM, ≥93% selectivity), with H2 liberation being achieved by visible-light irradiation in an aqueous solution. In comparison, CdS–CD was a highly efficient photocatalyst for benzyl alcohol dehydrogenation (77 µmol H2 in 180 h) compared to the CD-free CdS (5.4 µmol H2 in 30 h
  • activity (618.3 mmol⋅g−1⋅h−1) and an excellent stability (with a turnover number (TON) of 6417 after 75 h). Moreover, when the electron donor 1,3-dimethyl-2-phenyl-1,3-dihydrobenzimidazole (BIH) was added, the hybrid material functioned as an efficient photocatalyst for the reduction of CO2 to CO with 0.26
PDF
Album
Review
Published 18 Jan 2021

Synthesis of tetrafluorinated piperidines from nitrones via a visible-light-promoted annelation reaction

  • Vyacheslav I. Supranovich,
  • Igor A. Dmitriev and
  • Alexander D. Dilman

Beilstein J. Org. Chem. 2020, 16, 3104–3108, doi:10.3762/bjoc.16.260

Graphical Abstract
  • photocatalyst activated by blue light. The annelation is a result of a radical addition at the nitrone, intramolecular nucleophilic substitution, and reduction of the N–O bond. Keywords: difluoroalkylation; nitrones; organofluorine compounds; photocatalysis; radical addition; Introduction Nitrogen-containing
  • photocatalyst and stoichiometric quantities (1.2 equiv) of a reducing system (ascorbic acid/collidine). In this reaction no products were formed with reactant 2a remaining unconsumed (Table 1). To obtain a more reactive fluorinated halide, the bromine atom residing at the fluorinated moiety was exchanged for
  • in Scheme 3. The iridium(III) photocatalyst under the action of light and ascorbic acid generates the iridium(II) species. The latter serves as a key reducing agent, and importantly, its formation is maintained throughout the process while an excess amount of ascorbate is present. The annelation
PDF
Album
Supp Info
Letter
Published 29 Dec 2020

Metal-free synthesis of biarenes via photoextrusion in di(tri)aryl phosphates

  • Hisham Qrareya,
  • Lorenzo Meazza,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 3008–3014, doi:10.3762/bjoc.16.250

Graphical Abstract
  • the presence of increasing amounts of TFE (up to 20% v/v, continuous line). Synthesis of biarenes via a) photogenerated triplet aryl cations and aryl radicals (PC = photocatalyst), b) intramolecular free radical ipso substitution, c) thermally catalyzed extrusion of CO and SO2, d) photoinduced
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2020

Dawn of a new era in industrial photochemistry: the scale-up of micro- and mesostructured photoreactors

  • Emine Kayahan,
  • Mathias Jacobs,
  • Leen Braeken,
  • Leen C.J. Thomassen,
  • Simon Kuhn,
  • Tom van Gerven and
  • M. Enis Leblebici

Beilstein J. Org. Chem. 2020, 16, 2484–2504, doi:10.3762/bjoc.16.202

Graphical Abstract
  • packed bed reactor so that several microchannels were created among the beads. Glass beads were coated with a TiO2 photocatalyst. The photoreactor was illuminated with 192 LEDs that could provide 100 mW of power each. The distance between the LED board and the reactor was adjusted to give a uniform
  • constant. Many photoreactions are heterogeneous, which means that the reaction requires the presence of at least two phases. Heterogeneous reactions require either a solid photocatalyst in a liquid medium or gas and liquid phases as the reactants. The mass transport and mixing gain extra importance in such
  • systems. The mass transport is usually represented by the ratio of catalyst surface area to the reaction volume in photocatalytic systems. The photocatalyst could either be mixed with the reactants and fed into the reactor (slurry systems) or immobilized on a reactor surface. Slurry reactors remain the
PDF
Album
Review
Published 08 Oct 2020

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • 1 with amine catalyst 3 to give enamine intermediate 4. The initiation step is proposed to be a reductive quench of the photocatalyst using 4 as a sacrificial reductant to give [Ru]•−, which can then reduce 2 to give electrophilic radical 2•. Addition of 2• to another molecule of 4 generates α-amino
  • ], electron-deficient arenes [24], and nitriles [25]. Additionally, Cozzi recently applied a novel aluminium-based photocatalyst 9 to this reaction, as an earth-abundant metal alternative albeit with slightly reduced enantioselectivities (8 examples, up to 96:4 er) [26]. Interestingly, as with some other
  • reductively quenches the photocatalyst to form enaminyl radical 13•+. However, in this reaction 13•+ can then add to the alkene to give an alkyl radical 14•+, followed by hydrogen atom abstraction from the thiol, acting as a HAT catalyst, to give iminium ion intermediate 15. Hydrolysis of 15 generates the
PDF
Album
Review
Published 29 Sep 2020

Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis

  • Shahboz Yakubov and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2020, 16, 2151–2192, doi:10.3762/bjoc.16.183

Graphical Abstract
  • reactions proceed under photoredox catalysis (PRC), involving Dexter electron transfer. Such photoredox reactions begin with the excitation of the photocatalyst (PC) by visible light, followed by a single-electron transfer (SET) between the excited photocatalyst and another molecule (quencher, Scheme 2A
  • ). An unfortunate consequence of this is that there are many organic molecules with redox potentials that lie beyond the range of those of the excited photocatalyst [87]. The transiently generated (ultralow concentration of) the excited-state catalyst does not persist long enough even for slightly
  • which the excited state photocatalyst participates directly in HAT with the substrate (Scheme 2B), herein termed PHAT [88]. iii) Photochemical reactions where the photosensitization catalyst (PSCat) engages in Dexter energy transfer (typically TTET) with the substrate (or fluorinating reagent) to induce
PDF
Album
Review
Published 03 Sep 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • , few examples have been reported in which the photoredox process modifies the oxidation state of a catalyst [55][56]. Subsequently, C–H activation protocols benefiting from mild photocatalytic reoxidation have spread rapidly [60][61][62]. In such a case, a photocatalyst (PC) is introduced in the
  • that both, the excited Ir photocatalyst and the superoxide anion generated during the transformation, were able to oxidize the low-valent Pd(0) species resulting from the reductive elimination (Figure 6). Under such dual catalysis protocol, various oxidant-sensitive functional groups were tolerated
  • -functionalization viewpoint, thus furnishing a large panel of compounds in excellent to good yields. This C–H olefination of arenes was performed under aerobic conditions in order to reoxidize the photocatalyst (Figure 8). Interestingly, the desired products were also delivered while using a stoichiometric amount
PDF
Album
Review
Published 21 Jul 2020

Photoredox-catalyzed silyldifluoromethylation of silyl enol ethers

  • Vyacheslav I. Supranovich,
  • Vitalij V. Levin and
  • Alexander D. Dilman

Beilstein J. Org. Chem. 2020, 16, 1550–1553, doi:10.3762/bjoc.16.126

Graphical Abstract
  • )trimethylsilane followed by a reduction of the primary products with sodium borohydride is described. An 18 W, 375 nm LED was used as the light source. The reaction is performed in the presence of a gold photocatalyst, which effects the generation of a (trimethylsilyl)difluoromethyl radical via cleavage of the
  • source of hydrogen [21]. We thought that silane 1 could couple with silyl enol ethers in the presence of a photocatalyst affording fluoroalkylation products. Indeed, silyl enol ethers were found to be good acceptors of fluorinated radicals, and the resultant silyloxy-substituted radicals underwent single
  • strongly reducing catalysts may be associated with the ability of gold to interact with the bromine atom of silane 1 followed by inner-sphere electron transfer [27]. The radical then attacks silyl enol ether 2, and the subsequent silyloxy-substituted radical is oxidized by the photocatalyst to generate the
PDF
Album
Supp Info
Letter
Published 29 Jun 2020

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
  • the molar attenuation coefficient of the photocatalyst (ε), its concentration (c), and the optical path length (l). This also applies to immobilising an HPCat in a flow reactor, which generally confines and concentrates the material within a transparent vessel with high surface-to-volume ratio
  • solution, completing the photocatalyst cycle. Charge carriers must overcome competing processes that result in the immobilisation and recombination of charge carriers. The photogenerated electron/hole pair will spontaneously undergo bulk or surface recombination if they cannot efficiently separate, which
  • dependent on the temperature and electronic disorder as each hop requires the reorganisation of the molecules in the chain [115]. A particularly popular organic semiconductor photocatalyst in the recent literature is graphitic carbon nitride (g-C3N4) [23]. g-C3N4 was one of the first synthetic polymers
PDF
Album
Review
Published 26 Jun 2020

Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review

  • Alessandra Del Tito,
  • Havall Othman Abdulla,
  • Davide Ravelli,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 1476–1488, doi:10.3762/bjoc.16.123

Graphical Abstract
  • photocatalyst, have revolutionized the way chemists can arrive to important chemical scaffolds [24][25][26]. Indeed, the photocatalytic approach combines unparalleled mild conditions, due to the use of photons as traceless reagents that leave no residue behind [27][28], with the exploitation of rather
  • heteroarene analogues via the intermediacy of a radical. However, some interesting approaches carried out under photomediated or photocatalyst-free conditions have been likewise included for the sake of completeness. Review 1 Synthesis of phenanthrenes The photocatalyzed synthesis of the phenanthrene skeleton
  • -bromochalcones (Scheme 3). Thus, compounds 3.1a–d underwent a one-electron reduction by the excited photocatalyst fac-Ir(ppy)3. Upon bromide anion loss, the α-keto vinyl radicals 3.2·a–d were then formed, which smoothly added onto the vicinal aromatic ring in an intramolecular fashion, affording phenanthrene
PDF
Album
Review
Published 25 Jun 2020
Other Beilstein-Institut Open Science Activities