Search for "Grignard reagent" in Full Text gives 107 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2014, 10, 369–383, doi:10.3762/bjoc.10.35
Graphical Abstract
Figure 1: Natural products and other bioactive piperidine derivatives of type B.
Figure 2: Retrosynthetic analysis of piperidines B (X = OH or leaving group, PG = protecting group).
Scheme 1: Synthesis of the protected amino acids 2. (a) KOH for 1b. b) PG–X = Cbz–Cl (1a–c), Boc2O (1d).
Scheme 2: Synthesis of hydroxy ketones 7 (R = Me (a), Bn (b), Ph (c) and EtSMe (d); PG = Cbz (a–c), Boc (d)).
Scheme 3: Synthesis of amides 5e and 5f and ketone 7e.
Scheme 4: Synthesis of amino alcohols syn-9a–d and oxazolidinone 10a. (for 7a–c conditions A: H2 (1 atm), Pd/...
Scheme 5: Competition between the Michaelis–Arbuzow process and the desired cyclodehydration of amino alcohol...
Scheme 6: Initial synthesis of the trans-piperidinol 11a in diminished enantiopurity. aThe amino alcohol 9a o...
Scheme 7: Synthesis of trans-piperidinol 11a in excellent ee.
Scheme 8: Synthesis of L-733,060·HCl.
Beilstein J. Org. Chem. 2014, 10, 163–193, doi:10.3762/bjoc.10.14
Graphical Abstract
Scheme 1: Vogel’s first approach towards the divinylcyclopropane rearrangement [4] and characterization of cis-d...
Scheme 2: Transition states for the Cope rearrangement and the related DVCPR. Ts = transition state.
Scheme 3: Two possible mechanisms of trans-cis isomerizations of divinylcyclopropanes.
Scheme 4: Proposed biosynthesic pathway to ectocarpene (21), an inactive degradation product of a sexual pher...
Scheme 5: Proposed biosynthesis of occidenol (25) and related natural compounds.
Scheme 6: Gaich’s bioinspired system using the DVCPR to mimick the dimethylallyltryptophan synthase. DMAPP = ...
Scheme 7: Iguchi’s total synthesis of clavubicyclone, part 1.
Scheme 8: Iguchi’s total synthesis of clavubicyclone, part 2.
Scheme 9: Wender’s syntheses of the two pseudoguainanes confertin (50) and damsinic acid (51) and Pier’s appr...
Scheme 10: Overman’s total synthesis of scopadulcic acid B.
Scheme 11: Davies’ total syntheses of tremulenolide A and tremulenediol A.
Scheme 12: Davies formal [4 + 3] cycloaddition approach towards the formal synthesis of frondosin B.
Scheme 13: Davies and Sarpongs formal [4 + 3]-cycloaddition approach towards barekoxide (106) and barekol (107...
Scheme 14: Davies formal [4 + 3]-cycloaddition approach to 5-epi-vibsanin E (115) containing an intermediate c...
Scheme 15: Echavarren’s total synthesis of schisanwilsonene A (126) featuring an impressive gold-catalzed casc...
Scheme 16: Davies early example of a formal [4 + 3]-cycloaddition in alkaloids synthesis.
Scheme 17: Fukuyama’s total synthesis of gelsemine, part 1.
Scheme 18: Fukuyama’s total synthesis of gelsemine, featuring a divinylcyclopropane rearrangement, part 2.
Scheme 19: Kende’s total synthesis of isostemofoline, using a formal [4 + 3]-cycloaddition, including an inter...
Scheme 20: Danishefsky’s total synthesis of gelsemine, part 1.
Scheme 21: Danishefsky’s total synthesis of gelsemine, part 2.
Scheme 22: Fukuyama’s total synthesis of gelsemoxonine.
Scheme 23: Wender’s synthetic access to the core skeleton of tiglianes, daphnanes and ingenanes.
Scheme 24: Davies’ approach towards the core skeleton of CP-263,114 (212).
Scheme 25: Wood’s approach towards actinophyllic acid.
Scheme 26: Takeda’s approach towards the skeleton of the cyanthins, utilitizing the divinylcyclopropane rearra...
Scheme 27: Donaldson’s organoiron route towards the guianolide skeleton.
Scheme 28: Stoltz’s tandem Wolff/DVCPR rearrangement.
Scheme 29: Stephenson’s tandem photocatalysis/arylvinylcyclopropane rearrangement.
Scheme 30: Padwa’s rhodium cascade involving a DVCPR.
Scheme 31: Matsubara’s version of a DVCPR.
Scheme 32: Toste’s tandem gold-catalyzed Claisen-rearrangement/DVCPR.
Scheme 33: Ruthenium- and gold-catalyzed versions of tandem reactions involving a DVCPR.
Scheme 34: Tungsten, platinum and gold catalysed cycloisomerizations leading to a DVCPR.
Scheme 35: Reisman’s total synthesis of salvileucalin B, featuring an (undesired) vinylcyclopropyl carbaldehyd...
Scheme 36: Studies on the divinylepoxide rearrangement.
Scheme 37: Studies on the vinylcyclopropanecarbonyl rearrangement.
Scheme 38: Nitrogen-substituted variants of the divinylcyclopropane rearrangement.
Beilstein J. Org. Chem. 2013, 9, 2358–2366, doi:10.3762/bjoc.9.271
Graphical Abstract
Figure 1: Structures of some pumiliotoxins and an advanced intermediate.
Scheme 1: Synthesis of 5 from 6 via oxidation–addition sequence.
Scheme 2: Plausible stereochemical course of the preferential axial addition of methylmagnesium iodide to bic...
Scheme 3: Holmes’ exclusive trans-diastereoselective methylation of N-Cbz-protected piperidin-3-one 8.
Scheme 4: Our plan for the trans-diastereoselective methylation of keto-lactam 10.
Scheme 5: Retrosynthetic analysis of (8S,8aS)-8-hydroxy-8-methylindolizidin-5-one (5).
Scheme 6: Synthesis of compound 18.
Scheme 7: Synthesis of hydroxylactam 18.
Scheme 8: Synthesis of tertiary alcohol 22.
Scheme 9: Synthesis of (8S,8aS)-5 and its silyl ether 23.
Beilstein J. Org. Chem. 2013, 9, 2265–2319, doi:10.3762/bjoc.9.265
Graphical Abstract
Scheme 1: Scaled industrial processes for the synthesis of simple pyridines.
Scheme 2: Synthesis of nicotinic acid from 2-methyl-5-ethylpyridine (1.11).
Scheme 3: Synthesis of 3-picoline and nicotinic acid.
Scheme 4: Synthesis of 3-picoline from 2-methylglutarodinitrile 1.19.
Scheme 5: Picoline-based synthesis of clarinex (no yields reported).
Scheme 6: Mode of action of proton-pump inhibitors and structures of the API’s.
Scheme 7: Hantzsch-like route towards the pyridine rings in common proton pump inhibitors.
Figure 1: Structures of rosiglitazone (1.40) and pioglitazone (1.41).
Scheme 8: Synthesis of rosiglitazone.
Scheme 9: Syntheses of 2-pyridones.
Scheme 10: Synthesis and mechanism of 2-pyrone from malic acid.
Scheme 11: Polymer-assisted synthesis of rosiglitazone.
Scheme 12: Synthesis of pioglitazone.
Scheme 13: Meerwein arylation reaction towards pioglitazone.
Scheme 14: Route towards pioglitazone utilising tyrosine.
Scheme 15: Route towards pioglitazone via Darzens ester formation.
Scheme 16: Syntheses of the thiazolidinedione moiety.
Scheme 17: Synthesis of etoricoxib utilising Negishi and Stille cross-coupling reactions.
Scheme 18: Synthesis of etoricoxib via vinamidinium condensation.
Figure 2: Structures of nalidixic acid, levofloxacin and moxifloxacin.
Scheme 19: Synthesis of moxifloxacin.
Scheme 20: Synthesis of (S,S)-2,8-diazabicyclo[4.3.0]nonane 1.105.
Scheme 21: Synthesis of levofloxacin.
Scheme 22: Alternative approach to the levofloxacin core 1.125.
Figure 3: Structures of nifedipine, amlodipine and clevidipine.
Scheme 23: Mg3N2-mediated synthesis of nifedipine.
Scheme 24: Synthesis of rac-amlodipine as besylate salt.
Scheme 25: Aza Diels–Alder approach towards amlodipine.
Scheme 26: Routes towards clevidipine.
Figure 4: Examples of piperidine containing drugs.
Figure 5: Discovery of tiagabine based on early leads.
Scheme 27: Synthetic sequences to tiagabine.
Figure 6: Structures of solifenacin (2.57) and muscarine (2.58).
Scheme 28: Enantioselective synthesis of solifenacin.
Figure 7: Structures of DPP-4 inhibitors of the gliptin-type.
Scheme 29: Formation of inactive diketopiperazines from cis-rotameric precursors.
Figure 8: Co-crystal structure of carmegliptin bound in the human DPP-4 active site (PDB 3kwf).
Scheme 30: Improved route to carmegliptin.
Figure 9: Structures of lamivudine and zidovudine.
Scheme 31: Typical routes accessing uracil, thymine and cytosine.
Scheme 32: Coupling between pyrimidones and riboses via the Vorbrüggen nucleosidation.
Scheme 33: Synthesis of lamivudine.
Scheme 34: Synthesis of raltegravir.
Scheme 35: Mechanistic studies on the formation of 3.22.
Figure 10: Structures of selected pyrimidine containing drugs.
Scheme 36: General preparation of pyrimidines and dihydropyrimidones.
Scheme 37: Synthesis of imatinib.
Scheme 38: Flow synthesis of imatinib.
Scheme 39: Syntheses of erlotinib.
Scheme 40: Synthesis of erlotinib proceeding via Dimroth rearrangement.
Scheme 41: Synthesis of lapatinib.
Scheme 42: Synthesis of rosuvastatin.
Scheme 43: Alternative preparation of the key aldehyde towards rosuvastatin.
Figure 11: Structure comparison between nicotinic acetylcholine receptor agonists.
Scheme 44: Syntheses of varenicline and its key building block 4.5.
Scheme 45: Synthetic access to eszopiclone and brimonidine via quinoxaline intermediates.
Figure 12: Bortezomib bound in an active site of the yeast 20S proteasome ([114], pdb 2F16).
Scheme 46: Asymmetric synthesis of bortezomib.
Figure 13: Structures of some prominent piperazine containing drugs.
Figure 14: Structural comparison between the core of aplaviroc (4.35) and a type-1 β-turn (4.36).
Scheme 47: Examplary synthesis of an aplaviroc analogue via the Ugi-MCR.
Scheme 48: Syntheses of azelastine (5.1).
Figure 15: Structures of captopril, enalapril and cilazapril.
Scheme 49: Synthesis of cilazapril.
Figure 16: Structures of lamotrigine, ceftriaxone and azapropazone.
Scheme 50: Synthesis of lamotrigine.
Scheme 51: Alternative synthesis of lamotrigine (no yields reported).
Figure 17: Structural comparison between imiquimod and the related adenosine nucleoside.
Scheme 52: Conventional synthesis of imiquimod (no yields reported).
Scheme 53: Synthesis of imiquimod.
Scheme 54: Synthesis of imiquimod via tetrazole formation (not all yields reported).
Figure 18: Structures of various anti HIV-medications.
Scheme 55: Synthesis of abacavir.
Figure 19: Structures of diazepam compared to modern replacements.
Scheme 56: Synthesis of ocinaplon.
Scheme 57: Access to zaleplon and indiplon.
Scheme 58: Different routes towards the required N-methylpyrazole 6.65 of sildenafil.
Scheme 59: Polymer-supported reagents in the synthesis of key aminopyrazole 6.72.
Scheme 60: Early synthetic route to sildenafil.
Scheme 61: Convergent preparations of sildenafil.
Figure 20: Comparison of the structures of sildenafil, tadalafil and vardenafil.
Scheme 62: Short route to imidazotriazinones.
Scheme 63: Alternative route towards vardenafils core imidazotriazinone (6.95).
Scheme 64: Bayer’s approach to the vardenafil core.
Scheme 65: Large scale synthesis of vardenafil.
Scheme 66: Mode of action of temozolomide (6.105) as methylating agent.
Scheme 67: Different routes to temozolomide.
Scheme 68: Safer route towards temozolomide.
Figure 21: Some unreported heterocyclic scaffolds in top market drugs.
Beilstein J. Org. Chem. 2013, 9, 1533–1550, doi:10.3762/bjoc.9.175
Graphical Abstract
Figure 1: Structures of the ripostatins.
Figure 2: Retrosynthesis of ripostatin A.
Scheme 1: Nickel-catalyzed reductive coupling of alkynes and epoxides.
Figure 3: Proposed retrosynthesis of ripostatin A featuring enyne–epoxide reductive coupling and rearrangemen...
Scheme 2: Potential transition states and stereochemical outcomes for a concerted 1,5-hydrogen rearrangement.
Scheme 3: Rearrangements of vinylcyclopropanes to acylic 1,4-dienes.
Scheme 4: Synthesis of cyclopropyl enyne.
Scheme 5: Synthesis of model epoxide for investigation of the nickel-catalyzed coupling reaction.
Scheme 6: Nickel-catalyzed enyne–epoxide reductive coupling reaction.
Scheme 7: Proposed mechanism for the nickel-catalyzed coupling reaction of alkynes or enynes with epoxides.
Scheme 8: Regioselectivity changes in reductive couplings of alkynes and 3-oxygenated epoxides.
Scheme 9: Enyne reductive coupling with 1,2-epoxyoctane.
Figure 4: Initial retrosynthesis of the epoxide fragment by using dithiane coupling.
Scheme 10: Synthesis of dithiane by Claisen rearrangement.
Scheme 11: Deuterium labeling reveals that the allylic/benzylic site is most acidic.
Scheme 12: Oxy-Michael addition to δ-hydroxy-α,β-enones.
Figure 5: Revised retrosynthesis of epoxide 5.
Scheme 13: Synthesis of functionalized ketone by oxy-Michael addition.
Figure 6: Retrosynthesis by using iodocylization to introduce the epoxide.
Scheme 14: Synthesis of ketone 57 using thiazolidinethione chiral auxiliary.
Figure 7: Retrosynthesis involving decarboxylation of a β-ketoester.
Scheme 15: Synthesis of β-ketoester 61.
Scheme 16: Decarboxylation of 61 under Krapcho conditions.
Scheme 17: Improved synthesis of 63 and attempted iodocyclization.
Figure 8: Retrosynthesis utilizing Rychnovsky’s cyanohydrin acetonide methodology.
Scheme 18: Synthesis of cyanohydrin acetonide and attempted alkylation with epoxide.
Scheme 19: Allylation of acetonide and conversion to aldehyde.
Scheme 20: Synthesis of the epoxide precursor by an aldol−decarboxylation sequence.
Beilstein J. Org. Chem. 2013, 9, 1492–1500, doi:10.3762/bjoc.9.170
Graphical Abstract
Scheme 1: (a) Preparation of thiophene Grignard monomer and synthesis of P3HT by Kumada catalyst transfer pol...
Figure 1: Plot of number-average molecular weight, Mn, versus monomer–catalyst ratio [M]0/[I]0 for batch and ...
Figure 2: MALDI mass spectrum of low-molecular-weight preparation (GPC, Mn = 6.2 kg/mol) of P3HT in continuou...
Figure 3: Plot of number-average molecular weight, Mn, versus monomer–catalyst ratio [M]0/[I]0 for batch and ...
Scheme 2: Schematic representation of the telescoped preparation of P3HT in a flow reactor.
Figure 4: 1H NMR (CDCl3, 500 MHz) spectra of P3HT samples prepared in (a) flow and (b) batch show comparable ...
Figure 5: (a) Schematic diagram of the photovoltaic device geometry and (b) J–V curves of BHJ solar cells wit...
Beilstein J. Org. Chem. 2013, 9, 852–859, doi:10.3762/bjoc.9.98
Graphical Abstract
Scheme 1: Aza-Darzens synthesis of an N-Dpp vinyl aziridine.
Scheme 2: Closed transition state delivers E-aziridines.
Scheme 3: Open transition state leading to (Z)-5.
Scheme 4: Ring opening by Grignard reagent.
Beilstein J. Org. Chem. 2013, 9, 526–532, doi:10.3762/bjoc.9.57
Graphical Abstract
Scheme 1: Possible regioisomers obtained in the carbocupration reaction of α-heterosubstituted acetylenes 1.
Scheme 2: Regioselective carbometallation of N-alkynylsulfonamide 2.
Scheme 3: Regioselective carbometallation of ynamide 4.
Scheme 4: Regioselective carbometallation of cyclic N-alkynylcarbamate 7.
Figure 1: Molecular structure of 9f (hydrogen atoms except of H9 and H10 are omitted for clarity).
Beilstein J. Org. Chem. 2012, 8, 2207–2213, doi:10.3762/bjoc.8.249
Graphical Abstract
Figure 1: trans-Enediyne.
Scheme 1: Synthetic strategy for the preparation of trifluoromethylated diynes.
Scheme 2: Preparation of various enynes.
Figure 2: Regio- and stereoisomers.
Scheme 3: A proposed reaction mechanism.
Scheme 4: Synthesis of trans-enediynes. aDetermind by 19F NMR. Values in parentheses are of isolated yield.
Beilstein J. Org. Chem. 2012, 8, 1936–1998, doi:10.3762/bjoc.8.225
Graphical Abstract
Figure 1: Loschmidt’s structure proposal for benzene (1) (Scheme 181 from [3]) and the corresponding modern stru...
Figure 2: The first isolated bisallenes.
Figure 3: Carbon skeletons of selected bisallenes discussed in this review.
Scheme 1: The preparation of 1,2,4,5-hexatetraene (2).
Scheme 2: The preparation of a conjugated bisallene by the DMS-protocol.
Scheme 3: Preparation of the 3-deuterio- and 3,4-dideuterio derivatives of 24.
Scheme 4: A versatile method to prepare alkylated conjugated bisallenes and other allenes.
Scheme 5: A preparation of 3,4-dimethyl-1,2,4,5-hexatetraene (38).
Scheme 6: A (C6 + 0)-approach to 1,2,4,5-hexatetraene (2).
Scheme 7: The preparation of a fully alkylated bisallenes from a 2,4-hexadiyne-1,6-diol diacetate.
Scheme 8: The preparation of the first phenyl-substituted conjugated bisallenes 3 and 4.
Scheme 9: Selective hydrogenation of [5]cumulenes to conjugated bisallenes: another (C6 + 0)-route.
Scheme 10: Aryl-substituted conjugated bisallenes by a (C3 + C3)-approach.
Scheme 11: Hexaphenyl-1,2,4,5-hexatetraene (59) by a (C3 + C3)-approach.
Scheme 12: An allenation route to conjugated bisallenes.
Scheme 13: The preparation of 3,4-difunctionalized conjugated bisallenes.
Scheme 14: Problems during the preparation of sulfur-substituted conjugated bisallenes.
Scheme 15: The preparation of 3,4-dibromo bisallenes.
Scheme 16: Generation of allenolates by an oxy-Cope rearrangement.
Scheme 17: A linear trimerization of alkynes to conjugated bisallenes: a (C2 + C2 + C2)-protocol.
Scheme 18: Preparation of a TMS-substituted conjugated bisallene by a C3-dimerization route.
Scheme 19: A bis(trimethylsilyl)bisallene by a C3-coupling protocol.
Scheme 20: The rearrangement of highly substituted benzene derivatives into their conjugated bisallenic isomer...
Scheme 21: From fully substituted benzene derivatives to fully substituted bisallenes.
Scheme 22: From a bicyclopropenyl to a conjugated bisallene derivative.
Scheme 23: The conversion of a bismethylenecyclobutene into a conjugated bisallene.
Scheme 24: The preparation of monofunctionalized bisallenes.
Scheme 25: Preparation of bisallene diols and their cyclization to dihydrofurans.
Scheme 26: A 3,4-difunctionalized conjugated bisallene by a C3-coupling process.
Scheme 27: Preparation of a bisallenic diketone by a coupling reaction.
Scheme 28: Sulfur and selenium-substituted bisallenes by a [2.3]sigmatropic rearrangement.
Scheme 29: The biallenylation of azetidinones.
Scheme 30: The preparation of a fully ferrocenylated conjugated bisallene.
Scheme 31: The first isomerization of a 1,5-hexadiyne to a 1,2,4,5-hexatetraene.
Scheme 32: The preparation of alkynyl-substituted bisallenes by a C3-dimerization protocol.
Scheme 33: Preparation of another completely ferrocenylated bisallene.
Scheme 34: The cyclization of 1,5-hexadiyne (129) to 3,4-bismethylenecyclobutene (130) via 1,2,4,5-hexatetraen...
Scheme 35: Stereochemistry of the thermal cyclization of bisallenes to bismethylenecyclobutenes.
Scheme 36: Bisallene→bismethylenecyclobutene ring closures in the solid state.
Scheme 37: A bisallene cyclization/dimerization reaction.
Scheme 38: A selection of Diels–Alder additions of 1,2,4,5-hexatetraene with various double-bond dienophiles.
Scheme 39: The stereochemistry of the [2 + 4] cycloaddition to conjugated bisallenes.
Scheme 40: Preparation of azetidinone derivatives from conjugated bisallenes.
Scheme 41: Cycloaddition of heterodienophiles to a conjugated bisallene.
Scheme 42: Addition of triple-bond dienophiles to conjugated bisallenes.
Scheme 43: Sulfur dioxide addition to conjugated bisallenes.
Scheme 44: The addition of a germylene to a conjugated bisallene.
Scheme 45: Trapping of conjugated bisallenes with phosphinidenes.
Scheme 46: The cyclopropanantion of 1,2,4,5-hexatetraene (2).
Scheme 47: Photochemical reactions involving conjugated bisallenes.
Scheme 48: Base-catalyzed isomerizations of conjugated bisallenes.
Scheme 49: Ionic additions to a conjugated bisallene.
Scheme 50: Oxidation reactions of a conjugated bisallene.
Scheme 51: The mechanism of oxidation of the bisallene 24.
Scheme 52: CuCl-catalyzed cyclization of 1,2,4,5-hexatetraene (2).
Scheme 53: The conversion of conjugated bisallenes into cyclopentenones.
Scheme 54: Oligomerization of a conjugated bisallene by nickel catalysts.
Scheme 55: Generation of 1,2,5,6-heptatetraene (229) as a reaction intermediate.
Scheme 56: The preparation of a stable derivative of 1,2,5,6-heptatetraene.
Scheme 57: A bisallene with a carbonyl group as a spacer element.
Scheme 58: The first preparation of 1,2,6,7-octatetraene (242).
Scheme 59: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of enynes.
Scheme 60: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of homoallenyl bromides.
Scheme 61: Preparation of 1,2,6,7-octatetraenes by alkylation of propargylic substrates.
Scheme 62: Preparation of two highly functionalized 1,2,6,7-octatetraenes.
Scheme 63: Preparation of several higher α,ω-bisallenes.
Scheme 64: Preparation of different alkyl derivatives of α,ω-bisallenes.
Scheme 65: The preparation of functionalized 1,2,7,8-nonatetraene derivatives.
Scheme 66: Preparation of functionalized α,ω-bisallenes.
Scheme 67: The preparation of an α,ω-bisallene by direct homologation of an α,ω-bisalkyne.
Scheme 68: The gas-phase pyrolysis of 4,4-dimethyl-1,2,5,6-heptatetraene (237).
Scheme 69: Gas-phase pyrolysis of 1,2,6,7-octatetraene (242).
Scheme 70: The cyclopropanation of 1,2,6,7-octatetraene (242).
Scheme 71: Intramolecular cyclization of 1,2,6,7-octatetraene derivatives.
Scheme 72: The gas-phase pyrolysis of 1,2,7,8-nonatetraene (265) and 1,2,8,9-decatetraene (266).
Scheme 73: Rh-catalyzed cyclization of a functionalized 1,2,7,8-nonatetraene.
Scheme 74: A triple cyclization involving two different allenic substrates.
Scheme 75: Bicyclization of keto derivatives of 1,2,7,8-nonatetraene.
Scheme 76: The preparation of complex organic compounds from functionalized bisallenes.
Scheme 77: Cycloisomerization of an α,ω-bisallene containing a C9 tether.
Scheme 78: Organoborane polymers from α,ω-bisallenes.
Scheme 79: Preparation of trans- (337) and cis-1,2,4,6,7-octapentaene (341).
Scheme 80: The preparation of 4-methylene-1,2,5,6-heptatetraene (349).
Scheme 81: The preparation of acetylenic bisallenes.
Scheme 82: The preparation of derivatives of hydrocarbon 351.
Scheme 83: The construction of macrocyclic alleno-acetylenes.
Scheme 84: Preparation and reactions of 4,5-bismethylene-1,2,6,7-octatetraene (365).
Scheme 85: Preparation of 1,2-bis(propadienyl)benzene (370).
Scheme 86: The preparation of 1,4-bis(propadienyl)benzene (376).
Scheme 87: The preparation of aromatic and heteroaromatic bisallenes by metal-mediated coupling reactions.
Scheme 88: Double cyclization of an aromatic bisallene.
Scheme 89: Preparation of an allenic [15]paracyclophane by a ring-closing metathesis reaction of an aromatic α...
Scheme 90: Preparation of a macrocyclic ring system containing 1,4-bis(propadienyl)benzene units.
Scheme 91: Preparation of copolymers from 1,4-bis(propadienyl)benzene (376).
Scheme 92: A boration/copolymerization sequence of an aromatic bisallene and an aromatic bisacetylene.
Scheme 93: Formation of a layered aromatic bisallene.
Figure 4: The first members of the semicyclic bisallene series.
Scheme 94: Preparation of the first bis(vinylidene)cyclobutane derivative.
Scheme 95: Dimerization of strain-activated cumulenes to bis(vinylidene)cyclobutanes.
Scheme 96: Photodimerization of two fully substituted butatrienes in the solid state.
Scheme 97: Preparation of the two parent bis(vinylidene)cyclobutanes.
Scheme 98: The preparation of 1,3-bis(vinylidene)cyclopentane and its thermal isomerization.
Scheme 99: The preparation of the isomeric bis(vinylidene)cyclohexanes.
Scheme 100: Bi- and tricyclic conjugated bisallenes.
Scheme 101: A selection of polycyclic bisallenes.
Scheme 102: The first endocyclic bisallenes.
Figure 5: The stereochemistry of 1,2,6,7-cyclodecatetraene.
Scheme 103: The preparation of several endocyclic bisallenes.
Scheme 104: Synthesis of diastereomeric derivatives of 1,2,6,7-cyclodecatetraene.
Scheme 105: Preparation of a derivative of 1,2,8,9-cyclotetradecatetraene.
Scheme 106: The preparation of keto derivatives of cyclic bisallenes.
Scheme 107: The preparation of cyclic biscumulenic ring systems.
Scheme 108: Cyclic bisallenes in natural- and non-natural-product chemistry.
Scheme 109: The preparation of iron carbonyl complexes from cyclic bisallenes.
Figure 6: A selection of unknown exocyclic bisallenes that should have interesting chemical properties.
Scheme 110: The thermal isomerization of 1,2-diethynylcyclopropanes and -cyclobutanes.
Scheme 111: Intermediate generation of a cyclooctapentaene.
Scheme 112: Attempted preparation of a cyclodecahexaene.
Scheme 113: The thermal isomerization of 1,5,9-cyclododecatriyne (511) into [6]radialene (514).
Scheme 114: An isomerization involving a diketone derived from a conjugated bisallene.
Scheme 115: Typical reaction modes of heteroorganic bisallenes.
Scheme 116: Generation and thermal behavior of acyclic hetero-organic bisallenes.
Scheme 117: Generation of bis(propadienyl)thioether.
Scheme 118: The preparation of a bisallenic sulfone and its thermal isomerization.
Scheme 119: Bromination of the bisallenic sulfone 535.
Scheme 120: Metalation/hydrolysis of the bisallenic sulfone 535.
Scheme 121: Aromatic compounds from hetero bisallenes.
Scheme 122: Isomerization/cyclization of bispropargylic ethers.
Scheme 123: The preparation of novel aromatic systems by base-catalyzed isomerization of bispropargyl ethers.
Scheme 124: The isomerization of bisacetylenic thioethers to bicyclic thiophenes.
Scheme 125: Aromatization of macrocyclic bispropargylic sulfides.
Scheme 126: Preparation of ansa-compounds from macrocyclic bispropargyl thioethers.
Scheme 127: Alternate route for cyclization of a heterorganic bisallene.
Scheme 128: Multiple isomerization/cyclization of “double” bispropargylic thioethers.
Scheme 129: Preparation of a bisallenyl disulfide and its subsequent bicyclization.
Scheme 130: Thermal cyclization of a bisallenyl thiosulfonate.
Scheme 131: Some reactions of heteroorganic bisallenes with two sulfur atoms.
Scheme 132: Further methods for the preparation of heteroorganic bisallenes.
Scheme 133: Cyclization reactions of heteroorganic bisallenes.
Scheme 134: Thermal cycloadditions of bisallenic tertiary amines.
Scheme 135: Cyclization of a bisallenic tertiary amine in the presence of a transition-metal catalyst.
Scheme 136: A Pauson–Khand reaction of a bisallenic ether.
Scheme 137: Formation of a 2:1adduct from two allenic substrates.
Scheme 138: A ring-forming silastannylation of a bisallenic tertiary amine.
Scheme 139: A three-component cyclization involving a heterorganic bisallene.
Scheme 140: Atom-economic construction of a complex organic framework from a heterorganic α,ω-bisallene.
Beilstein J. Org. Chem. 2012, 8, 1536–1542, doi:10.3762/bjoc.8.174
Graphical Abstract
Scheme 1: (a) Cobalt-catalyzed C2-alkenylation of N-pyrimidylindole, (b) ortho-alkylation of aryl imine, and ...
Scheme 2: Addition of N-pyrimidylindoles to vinylsilanes.
Scheme 3: Addition of N-pyrimidylindole to norbornene (a) and 1-octene (b).
Scheme 4: Gram-scale reaction and deprotection of N-pyrimidyl group.
Beilstein J. Org. Chem. 2012, 8, 1191–1199, doi:10.3762/bjoc.8.132
Graphical Abstract
Scheme 1: Diverse synthesis of indoles using Bartoli reactions. aSee [24].
Figure 1: Nitroarenes on solid supports. In red: Nitroarenes failed to give indoles. aResin has been reported...
Figure 2: Temperature optimization with Grignard reagent 2{b}.
Figure 3: Temperature optimization with Grignard reagent 2{a}. Isolated yield.
Figure 4: Optimization studies of ester 1{h} with a Grignard reagent 2{d} to give indole 3{h,d} and methyl 3-...
Scheme 2: Stille reaction on solid supports.
Scheme 3: Suzuki reaction on solid supports.
Scheme 4: Sonogashira–Hagihara reaction on solid supports.
Beilstein J. Org. Chem. 2012, 8, 1112–1117, doi:10.3762/bjoc.8.123
Graphical Abstract
Figure 1: Furocoumarins.
Scheme 1: Synthesis of smyrindiol (1) by Grande et al.
Scheme 2: Synthesis of smyrindiol by Snider et al.
Scheme 3: Proline-catalyzed intramolecular aldol reaction of O-acetonyl-salicylaldehydes.
Scheme 4: First retrosynthetic analysis.
Scheme 5: Attempted proline catalyzed aldol reaction.
Scheme 6: Second retrosynthetic analysis.
Scheme 7: Asymmetric total synthesis of smyrindiol (1).
Beilstein J. Org. Chem. 2011, 7, 1697–1712, doi:10.3762/bjoc.7.200
Graphical Abstract
Scheme 1: Fatty acid biosynthesis.
Figure 1: Volatile methyl esters from bacteria.
Figure 2: Compounds found in the headspace extracts of M. aurantiaca.
Figure 3: Total ion chromatograms of the headspace extract from M. aurantiaca (A), and expansions of the tota...
Figure 4: FAMEs identified in the headspace extracts from M. aurantiaca.
Figure 5: Mass spectra of (A) methyl dodecanoate (83), (B) methyl 2-methyldodecanoate (10), (C) methyl 4-meth...
Scheme 2: McLafferty fragmentation of FAMEs.
Figure 6: The functional group increment FG(n)FAME, HP-5 MS.
Scheme 3: Synthesis of FAMEs identified from M. aurantiaca.
Scheme 4: Synthesis of the γ- and (ω−3)-methyl branched FAME 114.
Figure 7: Mass spectra of tentatively identified methyl 4,8-dimethyldodecanoate (115) and methyl 8-ethyl-4-me...
Beilstein J. Org. Chem. 2011, 7, 1421–1435, doi:10.3762/bjoc.7.166
Graphical Abstract
Figure 1: Fluorinated substances of biomedical relevance.
Scheme 1: Enantioselective electrophilic fluorination catalyzed by TADDOLates K1, K2. TADDOL = α,α,α',α'-tetr...
Scheme 2: Halogenation of β-ketocarbonyl compounds: Importance of enolization and the potential role of a met...
Figure 2: Model substrates for catalytic fluorinations, with the degree of enolization determined by 1H NMR m...
Figure 3: 1H NMR (250 MHz) spectra of fluorination reaction mixtures diluted with CDCl3 and filtered. a) Full...
Scheme 3: Qualitative ordering of catalytic activity of several Lewis acids in the fluorination 1→1-F.
Scheme 4: Catalysis of the “neutral” fluorination of β-ketoesters with F–TEDA by Lewis acidic titanium comple...
Figure 4: Structure of the chiral ansa-metallocene [(EBTHI)Ti(OTf)2].
Figure 5: Electrophilic fluorinating reagents of the N–F-type. F–TEDA [27]; NFTh = 1-fluoro-4-hydroxy-1,4-diazoni...
Scheme 5: Synthesis of trifluoromethyl-substituted TADDOL ligands.
Scheme 6: Correlation experiments for the assignment of absolute configuration to fluorination products 11-F, ...
Scheme 7: Mechanistic scheme proposed, based on visual and spectroscopic observations. L = solvent, counterio...
Figure 6: 1H NMR spectra of a species of the type A, generated in CD3CN solution from K1 by ionization in the...
Figure 7: Steric model explaining the face selectivity observed in the titanium–TADDOLate complex catalyzed f...
Figure 8: Excerpt from the X-ray structure of a catalyst/substrate complex [Ti(1-naphthyl-TADDOLato)(β-ketoen...
Beilstein J. Org. Chem. 2011, 7, 1261–1277, doi:10.3762/bjoc.7.147
Graphical Abstract
Scheme 1: Preparation of polyfunctional heteroarylzinc reagents.
Scheme 2: LiCl-mediated insertion of zinc dust to aryl and heteroaryl iodides.
Scheme 3: Selective insertions of Zn in the presence of LiCl.
Scheme 4: Chemoselective insertion of zinc in the presence of LiCl.
Scheme 5: Preparation and reactions of benzylic zinc reagents.
Scheme 6: Ni-catalyzed cross-coupling of benzylic zinc reagent 34 with ethyl 2-chloronicotinate.
Scheme 7: In situ generation of arylzinc reagents using Mg in the presence of LiCl and ZnCl2.
Scheme 8: Zincation of heterocycles with TMP2Zn (42).
Scheme 9: Preparation of highly functionalized zincated heterocycles using TMP2Zn·2MgCl2·2LiCl (42).
Scheme 10: Microwave-accelerated zincation of heterocycles using TMP2Zn·2MgCl2·2LiCl (42).
Scheme 11: The I/Mg-exchange as a metal-metathesis reaction.
Scheme 12: Regioselective Br/Mg-exchange of dibromoquinolines 65 and 68.
Scheme 13: Improved reagents for the regioselective Br/Mg-exchange on bromoquinolines.
Scheme 14: Synthesis of ellipticine (83) using an I/Mg-exchange reaction.
Scheme 15: An oxidative amination leading to the biologically active adenine, purvalanol A (84).
Scheme 16: Preparation of polyfunctional arylmagnesium reagents using Mg in the presence of LiCl.
Scheme 17: Preparation of polyfunctional magnesium reagents starting from organic chlorides.
Scheme 18: Selective multiple magnesiation of the pyrimidine ring.
Scheme 19: Synthesis of a p38 kinase inhibitor 119 and of a sPLA2 inhibitor 123.
Scheme 20: Synthesis of highly substituted indoles of type 128.
Scheme 21: Efficient magnesiations of polyfunctional aromatics and heterocycles using TMP2Mg·2LiCl (129).
Scheme 22: Negishi cross-coupling in the presence of substrates bearing an NH- or an OH-group.
Scheme 23: Negishi cross-coupling in the presence of a serine moiety.
Scheme 24: Radical catalysis for the performance of very fast Kumada reactions.
Scheme 25: MgCl2-mediated addition of functionalized aromatic, heteroaromatic, alkyl and benzylic organozincs ...
Beilstein J. Org. Chem. 2011, 7, 1234–1248, doi:10.3762/bjoc.7.144
Graphical Abstract
Scheme 1: Proposed stepwise mechanism for the zincation of benzene.
Figure 1: Molecular structure of 2 with selective atom labelling. Hydrogen atoms and minor disorder component...
Scheme 2: Synergic metallation of N,N-dimethylaniline (A) with sodium TMP-zincate 1 to produce 2, which was s...
Figure 2: Molecular structure of 3 with selective atom labelling and thermal ellipsoids drawn at the 50% prob...
Scheme 3: Indirect zincation of N,N-dimethylaniline producing 4, 5 and 6, which was then quenched with I2 to ...
Figure 3: Molecular structure of 4 with selective atom labelling and thermal ellipsoids drawn at the 50% prob...
Figure 4: Solvent-separated ion-pair structure of 5 with selective atom labelling and thermal ellipsoids draw...
Figure 5: Molecular structure of 6 with selective atom labelling and thermal ellipsoids drawn at the 50% prob...
Figure 6: Aromatic region of 1H NMR spectra for deuterated benzene solutions of (a) the crude mixture obtaine...
Figure 7: Relative energy sequence of the four theoretical regioisomers of the experimentally observed produc...
Beilstein J. Org. Chem. 2011, 7, 442–495, doi:10.3762/bjoc.7.57
Graphical Abstract
Figure 1: Structures of atorvastatin and other commercial statins.
Figure 2: Structure of compactin.
Scheme 1: Synthesis of pentasubstituted pyrroles.
Scheme 2: [3 + 2] Cycloaddition to prepare 5-isopropylpyrroles.
Scheme 3: Regiospecific [3 + 2] cycloaddition to prepare the pyrrole scaffold.
Scheme 4: Formation of the pyrrole core of atorvastatin via [3 + 2] cycloaddition.
Scheme 5: Formation of pyrrole 33 via the Paal–Knorr reaction.
Scheme 6: Convergent synthesis towards atorvastatin.
Figure 3: Binding pocket of sunitinib in the TRK KIT.
Scheme 7: Synthesis of sunitinib.
Scheme 8: Alternative synthesis of sunitinib.
Scheme 9: Key steps in the syntheses of sumatriptan and zolmitriptan.
Scheme 10: Introduction of the N,N-dimethylaminoethyl side chain.
Scheme 11: Japp–Klingemann reaction in the synthesis of sumatriptan.
Scheme 12: Synthesis of the intermediate sulfonyl chlorides 62 and 63.
Scheme 13: Alternative introduction of the sulfonamide.
Scheme 14: Negishi-type coupling to benzylic sulfonamides.
Scheme 15: Heck reaction used to introduce the sulfonamide side chain of naratriptan.
Scheme 16: Synthesis of the oxazolinone appendage of zolmitriptan.
Scheme 17: Grandberg indole synthesis used in the preparation of rizatriptan.
Scheme 18: Improved synthesis of rizatriptan.
Scheme 19: Larock-type synthesis of rizatriptan.
Scheme 20: Synthesis of eletriptan.
Scheme 21: Heck coupling for the indole system in eletriptan.
Scheme 22: Attempted Fischer indole synthesis of elatriptan.
Scheme 23: Successful Fischer indole synthesis for eletriptan.
Scheme 24: Mechanistic rationale for the Bischler–Möhlau reaction.
Scheme 25: Bischler-type indole synthesis used in the fluvastatin sodium synthesis.
Scheme 26: Palladium-mediated synthesis of ondansetron.
Scheme 27: Fischer indole synthesis of ondansetron.
Scheme 28: Optimised Pictet–Spengler reaction towards tadalafil.
Figure 4: Structures of carvedilol 136 and propranolol 137.
Scheme 29: Synthesis of the carbazole core of carvedilol.
Scheme 30: Alternative syntheses of 4-hydroxy-9H-carbazole.
Scheme 31: Convergent synthesis of etodolac.
Scheme 32: Alternative synthesis of etodolac.
Figure 5: Structures of imidazole-containing drugs.
Scheme 33: Synthesis of functionalised imidazoles towards losartan.
Scheme 34: Direct synthesis of the chlorinated imidazole in losartan.
Scheme 35: Synthesis of trisubstituted imidazoles.
Scheme 36: Preparation of the imidazole ring in olmesartan.
Scheme 37: Synthesis of ondansetron.
Scheme 38: Alternative route to ondansetron and its analogues.
Scheme 39: Proton pump inhibitors and synthesis of esomeprazole.
Scheme 40: Synthesis of benzimidazole core pantoprazole.
Figure 6: Structure of rabeprazole 194.
Scheme 41: Synthesis of candesartan.
Scheme 42: Alternative access to the candesartan key intermediate 216.
Scheme 43: .Medicinal chemistry route to telmisartan.
Scheme 44: Improved synthesis of telmisartan.
Scheme 45: Synthesis of zolpidem.
Scheme 46: Copper-catalysed 3-component coupling towards zolpidem.
Figure 7: Structure of celecoxib.
Scheme 47: Preparation of celecoxib.
Scheme 48: Alternative synthesis of celecoxib.
Scheme 49: Regioselective access to celecoxib.
Scheme 50: Synthesis of pazopanib.
Scheme 51: Syntheses of anastrozole, rizatriptan and letrozole.
Scheme 52: Regioselective synthesis of anastrozole.
Scheme 53: Triazine-mediated triazole formation towards anastrozole.
Scheme 54: Alternative routes to 1,2,4-triazoles.
Scheme 55: Initial synthetic route to sitagliptin.
Figure 8: Binding of sitagliptin within DPP-IV.
Scheme 56: The process route to sitagliptin key intermediate 280.
Scheme 57: Synthesis of maraviroc.
Scheme 58: Synthesis of alprazolam.
Scheme 59: The use of N-nitrosoamidine derivatives in the preparation of fused benzodiazepines.
Figure 9: Structures of itraconazole, ravuconazole and voriconazole.
Scheme 60: Synthesis of itraconazole.
Scheme 61: Synthesis of rufinamide.
Scheme 62: Representative tetrazole formation in valsartan.
Figure 10: Structure of tetrazole containing olmesartan, candesartan and irbesartan.
Scheme 63: Early stage introduction of the tetrazole in losartan.
Scheme 64: Synthesis of cilostazol.
Figure 11: Structure of cefdinir.
Scheme 65: Semi-synthesis of cefdinir.
Scheme 66: Thiazole syntheses towards ritonavir.
Scheme 67: Synthesis towards pramipexole.
Scheme 68: Alternative route to pramipexole.
Scheme 69: Synthesis of famotidine.
Scheme 70: Efficient synthesis of the hyperuricemic febuxostat.
Scheme 71: Synthesis of ziprasidone.
Figure 12: Structure of mometasone.
Scheme 72: Industrial access to 2-furoic acid present in mometasone.
Scheme 73: Synthesis of ranitidine from furfuryl alcohol.
Scheme 74: Synthesis of nitrofurantoin.
Scheme 75: Synthesis of benzofuran.
Scheme 76: Synthesis of amiodarone.
Scheme 77: Synthesis of raloxifene.
Scheme 78: Alternative access to the benzo[b]thiophene core of raloxifene.
Scheme 79: Gewald reaction in the synthesis of olanzapine.
Scheme 80: Alternative synthesis of olanzapine.
Figure 13: Access to simple thiophene-containing drugs.
Scheme 81: Synthesis of clopidogrel.
Scheme 82: Pictet–Spengler reaction in the preparation of tetrahydrothieno[3,2-c]pyridine (422).
Scheme 83: Alternative synthesis of key intermediate 422.
Figure 14: Co-crystal structures of timolol (left) and carazolol (right) in the β-adrenergic receptor.
Scheme 84: Synthesis of timolol.
Scheme 85: Synthesis of tizanidine 440.
Scheme 86: Synthesis of leflunomide.
Scheme 87: Synthesis of sulfamethoxazole.
Scheme 88: Synthesis of risperidone.
Figure 15: Relative abundance of selected transformations.
Figure 16: The abundance of heterocycles within top 200 drugs (5-membered rings).
Beilstein J. Org. Chem. 2011, 7, 386–393, doi:10.3762/bjoc.7.49
Graphical Abstract
Figure 1: Methods for synthesis of dibromides I and their use for preparation of 6-membered heterocycles.
Scheme 1: General methods for preparation of diols VII.
Scheme 2: General methods for preparation of tetrahydropyrans VIII.
Figure 2: Structures of 1,5-dibromomopentanes 1a–1d.
Scheme 3: Preparation of dibromides 1.
Scheme 4: Preparation of diol 2a.
Scheme 5: Preparation of diol 2b.
Scheme 6: Preparation of tetrahydropyrans 3a–3c.
Scheme 7: Preparation of tetrahydropyran 3d.
Scheme 8: Preparation of methylenetetrahydropyrans 6.
Scheme 9: Preparation of bromides 8 and 10.
Scheme 10: Preparation of sulfonium derivatives 11.
Beilstein J. Org. Chem. 2011, 7, 127–134, doi:10.3762/bjoc.7.18
Graphical Abstract
Scheme 1: Synthetic routes to isoxazoles 7a–7e.
Scheme 2: Synthetic routes to isoxazoles 7f–7h.
Scheme 3: Benzaldehyde photocycloaddition to 7a–7e.
Scheme 4: Photochemical ring contraction of isoxazoles 7f–7h.
Scheme 5: Photocycloaddition of aromatic aldehydes to di- and trimethyl isoxazoles 7d and 7e.
Scheme 6: Preparative photocycloadditions of 7e with aromatic aldehydes.
Figure 1: Structures of the photoproducts 9a–9c in the crystal.
Scheme 7: T-type photochromism of isoxazole–aldehyde pairs.
Scheme 8: Reductive cleavage of the trimethylisoxazole adduct 9a.
Beilstein J. Org. Chem. 2010, 6, 880–921, doi:10.3762/bjoc.6.88
Graphical Abstract
Figure 1: Examples of industrial fluorine-containing bio-active molecules.
Figure 2: CF3(S)- and CF3(O)-containing pharmacologically active compounds.
Figure 3: Hypotensive candidates with SRF and SO2RF groups – analogues of Losartan and Nifedipin.
Figure 4: The variety of the pharmacological activity of RFS-substituted compounds.
Figure 5: Recent examples of compounds containing RFS(O)n-groups [12-18].
Scheme 1: Fluorination of ArSCCl3 to corresponding ArSCF3 derivatives. For references see: a[38-43]; b[41,42]; c[43]; d[44]; e[38-43,45-47]; f[38-43,48,49]; g...
Scheme 2: Preparation of aryl pentafluoroethyl sulfides.
Scheme 3: Mild fluorination of the aryl SCF2Br derivatives.
Scheme 4: HF fluorinations of aryl α,α,β-trichloroisobutyl sulfide at various conditions.
Scheme 5: Monofluorination of α,α-dichloromethylene group.
Scheme 6: Electrophilic substitution of phenols with CF3SCl [69].
Scheme 7: Introduction of SCF3 groups into activated phenols [71-74].
Scheme 8: Preparation of tetrakis(SCF3)-4-methoxyphenol [72].
Scheme 9: The interactions of resorcinol and phloroglucinol derivatives with RFSCl.
Scheme 10: Reactions of anilines with CF3SCl.
Scheme 11: Trifluoromethylsulfanylation of anilines with electron-donating groups in the meta position [74].
Scheme 12: Reaction of benzene with CF3SCl/CF3SO3H [77].
Scheme 13: Reactions of trifluoromethyl sulfenyl chloride with aryl magnesium and -mercury substrates.
Scheme 14: Reactions of pyrroles with CF3SCl.
Scheme 15: Trifluoromethylsulfanylation of indole and indolizines.
Scheme 16: Reactions of N-methylpyrrole with CF3SCl [80,82].
Scheme 17: Reactions of furan, thiophene and selenophene with CF3SCl.
Scheme 18: Trifluoromethylsulfanylation of imidazole and thiazole derivatives [83].
Scheme 19: Trifluoromethylsulfanylation of pyridine requires initial hydride reduction.
Scheme 20: Introduction of additional RFS-groups into heterocyclic compounds in the presence of CF3SO3H.
Scheme 21: Introduction of additional RFS-groups into pyrroles [82,87].
Scheme 22: By-products in reactions of pyrroles with CF3SCl [82].
Scheme 23: Reaction of aromatic iodides with CuSCF3 [93,95].
Scheme 24: Reaction of aromatic iodides with RFZCu (Z = S, Se), RF = CF3, C6F5 [93,95,96].
Scheme 25: Side reactions during trifluoromethylsulfanylation of aromatic iodides with CF3SCu [98].
Scheme 26: Reactions with in situ generated CuSCF3.
Scheme 27: Perfluoroalkylthiolation of aryl iodides with bulky RFSCu [105].
Scheme 28: In situ formation and reaction of RFZCu with aryl iodides.
Figure 6: Examples of compounds obtained using in situ generated RFZCu methodology [94].
Scheme 29: Introduction of SCF3 group into aromatics via difluorocarbene.
Scheme 30: Tetrakis(dimethylamino)ethylene dication trifluoromethyl thiolate as a stable reagent for substitut...
Scheme 31: The use of CF2=S/CsF or (CF3S)2C=S/CsF for the introduction of CF3S groups into fluorinated heteroc...
Scheme 32: One-pot synthesis of ArSCF3 from ArX, CCl2=S and KF.
Scheme 33: Reaction of aromatics with CF3S− Kat+ [115].
Scheme 34: Reactions of activated aromatic chlorides with AgSCF3/KI.
Scheme 35: Comparative CuSCF3/KI and Hg(SCF3)2/KI reactions.
Scheme 36: Me3SnTeCF3 – a reagent for the introduction of the TeCF3 group.
Scheme 37: Sandmeyer reactions with CuSCF3.
Scheme 38: Reactions of perfluoroalkyl iodides with alkali and organolithium reagents.
Scheme 39: Perfluoroalkylation with preliminary breaking of the disulfide bond.
Scheme 40: Preparation of RFS-substituted anilines from dinitrodiphenyl disulfides.
Scheme 41: Photochemical trifluoromethylation of 2,4,6-trimercaptochlorobenzene [163].
Scheme 42: Putative process for the formation of B, C and D.
Scheme 43: Trifluoromethylation of 2-mercapto-4-hydroxy-6-trifluoromethylyrimidine [145].
Scheme 44: Deactivation of 2-mercapto-4-hydroxypyrimidines S-centered radicals.
Scheme 45: Perfluoroalkylation of thiolates with CF3Br under UV irradiation.
Scheme 46: Catalytic effect of methylviologen for RF• generation.
Scheme 47: SO2−• catalyzed trifluoromethylation.
Scheme 48: Electrochemical reduction of CF3Br in the presence of SO2 [199,200].
Scheme 49: Participation of SO2 in the oxidation of ArSCF3−•.
Scheme 50: Electron transfer cascade involving SO2 and MV.
Scheme 51: Four stages of the SRN1 mechanism for thiol perfluoroalkylation.
Scheme 52: A double role of MV in the catalysis of RFI reactions with aryl thiols.
Scheme 53: Photochemical reaction of pentafluoroiodobenzene with trifluoromethyl disulfide.
Scheme 54: N- Trifluoromethyl-N-nitrosobenzene sulfonamide – a source of CF3• radicals [212,213].
Scheme 55: Radical trifluoromethylation of organic disulfides with ArSO2N=NCF3.
Scheme 56: Barton’s S-perfluoroalkylation reactions [216].
Scheme 57: Decarboxylation of thiohydroxamic esters in the presence of C6F13I.
Scheme 58: Reactions of thioesters of trifluoroacetic and trifluoromethanesulfonic acids in the presence of ar...
Scheme 59: Perfluoroalkylation of polychloropyridine thiols with xenon perfluorocarboxylates or XeF2 [222,223].
Scheme 60: Interaction of Xe(OCORF)2 with nitroaryl disulfide [227].
Scheme 61: Bi(CF3)3/Cu(OCOCH3)2 trifluoromethylation of thiophenolate [230].
Scheme 62: Reaction of fluorinated carbanions with aryl sulfenyl chlorides.
Scheme 63: Reaction of methyl perfluoromethacrylate with PhSCl in the presence of fluoride.
Scheme 64: Reactions of ArSCN with potassium and magnesium perfluorocarbanions [237].
Scheme 65: Reactions of RFI with TDAE and organic disulfides [239,240].
Scheme 66: Decarboxylation of perfluorocarboxylates in the presence of disulfides [245].
Scheme 67: Organization of a stable form of “CF3−” anion in the DMF.
Scheme 68: Silylated amines in the presence of fluoride can deprotonate fluoroform for reaction with disulfide...
Figure 7: Other examples of aminomethanols [264].
Scheme 69: Trifluoromethylation of diphenyl disulfide with PhSO2CF3/t-BuOK.
Scheme 70: Amides of trifluoromethane sulfinic acid are sources of CF3− anion.
Scheme 71: Trifluoromethylation of various thiols using “hyper-valent” iodine (III) reagent [279].
Scheme 72: Trifluoromethylation of p-nitrothiophenolate with diaryl CF3 sulfonium salts [280].
Scheme 73: Trifluoromethyl transfer from dibenzo (CF3)S-, (CF3)Se- and (CF3)Te-phenium salts to thiolates [283].
Scheme 74: Multi-stage paths for synthesis of dibenzo-CF3-thiophenium salts [61].
Beilstein J. Org. Chem. 2010, 6, No. 77, doi:10.3762/bjoc.6.77
Graphical Abstract
Scheme 1: General scheme for the carbocupration reaction.
Scheme 2: Regioselectivity in the carbocupration reaction.
Scheme 3: Carbocupration of α-alkoxyalkynes.
Scheme 4: Carbocupration of substituted α-alkoxyalkynes.
Scheme 5: Formation of the branched isomer.
Scheme 6: Formation of the linear isomer.
Scheme 7: Carbocupration of O-alkynyl carbamates.
Scheme 8: Carbocupration of ynamines.
Scheme 9: Carbocupration of ynamide.
Scheme 10: Formation of aldol products possessing stereogenic quaternary carbon centers.
Scheme 11: Carbocupration of alkynyl sulfonamide.
Scheme 12: Tandem carbocupration-sigmatropic rearrangement.
Scheme 13: Silylcupration of alkynyl sulfonamides.
Scheme 14: Carbocupration of P-substituted alkynes.
Scheme 15: Carbocupration of alkynylphosphonates.
Scheme 16: Carbocupration of thioalkynes.
Scheme 17: Tandem carbocupration-1,2-metalate rearrangement.
Scheme 18: Carbocupration with functionalized organocopper species.
Scheme 19: Carbocupration of alkynyl sulfoxides.
Scheme 20: Carbocupration of alkynyl sulfones.
Scheme 21: Carbocupration of alkynyl sulfoximines.
Scheme 22: Carbocupration of alkynylsilanes.
Scheme 23: Carbocupration of functionalized alkynylsilanes.
Scheme 24: Silyl- and stannyl cupration of silyl- and stannylalkynes.
Beilstein J. Org. Chem. 2009, 5, No. 59, doi:10.3762/bjoc.5.59
Graphical Abstract
Scheme 1: Synthesis and structures of calix[4]arenes 6–8; 3, 6: n = 2; 4, 7: n = 3; 5, 8: n = 5.
Scheme 2: Synthesis of calix[4]arene 10 and 12.
Beilstein J. Org. Chem. 2009, 5, No. 45, doi:10.3762/bjoc.5.45
Graphical Abstract
Scheme 1: Synthesis of 2-diethanolaminoborate-1,3-butadiene.
Figure 1: Molecular structure of boron substituted diene 2.
Scheme 2: Diels–Alder reactions.
Scheme 3: Cross coupling reactions.
Beilstein J. Org. Chem. 2009, 5, No. 29, doi:10.3762/bjoc.5.29
Graphical Abstract
Scheme 1: Synthesis of 4-methoxybiphenyl (4-MeOBP) and by-products in the Kumada reaction.
Figure 1: Stainless steel single column flow reactor for discovery scale synthesis.
Figure 2: (a): Schematic diagram of the parallel reactor housing (dimensions in mm); (b) the stainless steel ...
Figure 3: Schematic diagram of the pneumatic pumping system.
Scheme 2: Proposed catalytic cycles for the transformation of 4-haloanisole (Ar-X) and Grignard reagent (RMgX...
Figure 4: Comparative study of flow rates in a single channel meso flow reactor. The output was sampled hourl...
Figure 5: Kumada reaction carried out in a parallel channel meso reactor at a flow rate of 95 ml h−1.
Figure 6: Kumada reaction carried out in a parallel channel meso reactor over a 31-hour period at a flow rate...
Figure 7: Kumada reaction carried out in a parallel channel meso reactor at a flow rate of 190 ml h−1.