Search results

Search for "single electron transfer" in Full Text gives 121 result(s) in Beilstein Journal of Organic Chemistry.

Atom-economical group-transfer reactions with hypervalent iodine compounds

  • Andreas Boelke,
  • Peter Finkbeiner and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2018, 14, 1263–1280, doi:10.3762/bjoc.14.108

Graphical Abstract
  • moiety in C3 position, affording the trans-isomer 46 exclusively. The reaction mechanism presumably follows a radical pathway, which begins with a single electron transfer (SET) from Fe(II) to 36b generating a Fe(III) species as well as benziodoxolonyl radical A or benzoyloxy radical A’ and an azide
PDF
Album
Review
Published 30 May 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
  • single-electron-transfer-based oxidation processes of 162 gave 12 in 60% yield. 3.1.2. Other synthetic approaches: A convenient synthesis of 2,3-benzotropone (12) from α-tetralone (171) by ring expansion was performed by Sato’s group (Scheme 31) [140]. First, 1-ethoxy-3,4-dihydronaphthalene (172) was
PDF
Album
Review
Published 23 May 2018

Selective carboxylation of reactive benzylic C–H bonds by a hypervalent iodine(III)/inorganic bromide oxidation system

  • Toshifumi Dohi,
  • Shohei Ueda,
  • Kosuke Iwasaki,
  • Yusuke Tsunoda,
  • Koji Morimoto and
  • Yasuyuki Kita

Beilstein J. Org. Chem. 2018, 14, 1087–1094, doi:10.3762/bjoc.14.94

Graphical Abstract
  • single-electron-transfer (SET) reactivities [33][34][35][36][37] allow selective activation of the benzylic C(sp3)–H bond for oxidative functionalization and coupling reactions. Initially, the SET oxidation ability of pentavalent iodine reagents, especially o-iodoxybenzoic acid (IBX), in benzylic
PDF
Album
Supp Info
Letter
Published 16 May 2018

Polysubstituted ferrocenes as tunable redox mediators

  • Sven D. Waniek,
  • Jan Klett,
  • Christoph Förster and
  • Katja Heinze

Beilstein J. Org. Chem. 2018, 14, 1004–1015, doi:10.3762/bjoc.14.86

Graphical Abstract
  • (ferrocenylmethyl)ammonium salts acting as catholytes. Ferrocene dicarboxylic acid has been described as mediator for the voltammetric determination of glutathione in hemolized erythrocytes [16]. (Substituted) ferrocenium salts were successfully employed as single-electron transfer (SET) reagents in organic
PDF
Album
Supp Info
Full Research Paper
Published 07 May 2018

Cobalt-catalyzed directed C–H alkenylation of pivalophenone N–H imine with alkenyl phosphates

  • Wengang Xu and
  • Naohiko Yoshikai

Beilstein J. Org. Chem. 2018, 14, 709–715, doi:10.3762/bjoc.14.60

Graphical Abstract
  • . The species B would then undergo a single-electron transfer (SET) to the alkenyl phosphate 2 to generate a pair of an oxidized cobaltacycle B+ and a radical anion 2•−. This would be followed by the elimination of a phosphate anion and immediate recombination of the cobalt center and the alkenyl
PDF
Album
Supp Info
Full Research Paper
Published 28 Mar 2018

Stepwise radical cation Diels–Alder reaction via multiple pathways

  • Ryo Shimizu,
  • Yohei Okada and
  • Kazuhiro Chiba

Beilstein J. Org. Chem. 2018, 14, 704–708, doi:10.3762/bjoc.14.59

Graphical Abstract
  • two distinctive pathways, including “direct” and “indirect”, are possible to construct the Diels–Alder adduct. Keywords: Diels–Alder reaction; radical cation; rearrangement; single electron transfer; stepwise; Introduction Umpolung, also known as polarity inversion, is a powerful approach in
  • synthetic organic chemistry to trigger reactions that are otherwise difficult or impossible. In an umpolung reaction, the normal reactivity of the molecules being studied is reversed, e.g., electrophilicity is generated from a nucleophile. The single electron transfer (SET) process has been recognized as
PDF
Album
Supp Info
Letter
Published 27 Mar 2018

Investigating radical cation chain processes in the electrocatalytic Diels–Alder reaction

  • Yasushi Imada,
  • Yohei Okada and
  • Kazuhiro Chiba

Beilstein J. Org. Chem. 2018, 14, 642–647, doi:10.3762/bjoc.14.51

Graphical Abstract
  • -8588, Japan 10.3762/bjoc.14.51 Abstract Single electron transfer (SET)-triggered radical ion-based reactions have proven to be powerful options in synthetic organic chemistry. Although unique chain processes have been proposed in various photo- and electrochemical radical ion-based transformations
  • efficiency of up to 8000%. The reaction monitoring profiles showed sigmoidal curves with induction periods, suggesting the involvement of intermediate(s) in the rate determining step. Keywords: chain process; Diels–Alder reaction; electrocatalytic; radical cation; single electron transfer; Introduction
  • Recently, radical ion reactivity has received great attention in the field of synthetic organic chemistry. The single electron transfer (SET) strategy is the key to generating radical ions, which provide powerful intermediates for bond formations. Photo- [1][2][3][4][5][6] and electrochemistry [7][8][9][10
PDF
Album
Supp Info
Letter
Published 16 Mar 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • NMR spectroscopy and ESIMS. It was proposed that [CuCF3] was generated through reduction of S-(trifluoromethyl)diphenylsulfonium triflate by Cu0 through a single-electron transfer (SET) process (Scheme 3). In 2015, the group of Lu and Shen [16] developed a new electrophilic trifluoromethylation
  • this conversion. A plausible mechanism is proposed in Scheme 24. First, the CF3 radical, generated from Umemoto’s reagent through copper-mediated single electron transfer (SET), reacts with copper affording CuCF3. Second, Ar–CF3 was formed by the reaction of CuCF3 with the aryl radical derived from the
  • , generated through copper-mediated single electron transfer from diazonium salt A, released nitrogen gas affording the aryl radical C. On the other hand, the CF3 radical was generated through the reaction of TBHP with NaSO2CF3 in the presence of Cu(I) species. Then, the CF3 radical reacted with the Cu(I
PDF
Album
Review
Published 17 Jan 2018

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
  • . Photoredox-active metal complexes or organic dyes are used to initiate photo-induced single-electron transfer (SET) processes upon excitation with visible-light. Such photooxidations or photoreductions yield reactive organic radicals, which can undergo unique bond forming reactions, under very mild
  • alternative reductive pathway, where photoexcited [Ru(bpy)3]2+* first oxidizes the sulfur anion by single-electron transfer and is re-oxidized by dioxygen could not be excluded. Lei and co-workers reported an external oxidant-free photocatalyzed procedure for the same reaction, also applying [Ru(bpy)3](PF6)2
  • from alkyl and aryl thiosulfates and aryl diazonium salts (Scheme 39) [74]. They confirmed by transient absorption spectroscopy that a single-electron transfer occurs between [Ru(bpy)3]Cl2 and the aryl diazonium salt. Additionally, electron paramagnetic resonance studies showed that K2CO3 interacts
PDF
Album
Review
Published 05 Jan 2018

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation and chlorination. Part 2: Use of CF3SO2Cl

  • Hélène Chachignon,
  • Hélène Guyon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2800–2818, doi:10.3762/bjoc.13.273

Graphical Abstract
  • single-electron transfer (SET) between CF3SO2Cl and the association CuBr/chiral phosphoric acid. In the process, SO2 and HCl were released, but the latter was scavenged by Ag2CO3, minimising its impact on the reaction process by notably avoiding hydroamination side reactions. The trifluoromethyl radical
PDF
Album
Full Research Paper
Published 19 Dec 2017

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation. Part 1: Use of CF3SO2Na

  • Hélène Guyon,
  • Hélène Chachignon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2764–2799, doi:10.3762/bjoc.13.272

Graphical Abstract
  • CF3SO2Na in the presence of copper(I), reacted at the more electron-rich carbon atom of the C=C double bond to give the radical species 5 that was oxidised by copper(II) into the corresponding cationic intermediate 6 via a single electron transfer (SET). Finally, the acetyl cation was eliminated to provide
  • -products. The mechanism was similar to previous examples to generate the β-CF3 alkyl radical intermediate 44, which was trapped by halogen atom transfer from the halogenating agent. The nitrogen-centered radical 45 oxidised Mes-Acr* by a single-electron-transfer process to restart the catalytic cycle
  • were compatible with the reaction conditions. A series of control experiments that included the inhibition of the reaction in the presence of TEMPO, deuteration and isotope effect experiments were carried out and led the authors to propose the single-electron transfer mechanism presented in Scheme 44
PDF
Album
Full Research Paper
Published 19 Dec 2017

Reagent-controlled regiodivergent intermolecular cyclization of 2-aminobenzothiazoles with β-ketoesters and β-ketoamides

  • Irwan Iskandar Roslan,
  • Kian-Hong Ng,
  • Gaik-Khuan Chuah and
  • Stephan Jaenicke

Beilstein J. Org. Chem. 2017, 13, 2739–2750, doi:10.3762/bjoc.13.270

Graphical Abstract
  • silylation [72]. In these reactions, the single electron transfer (SET) is initiated by KOt-Bu/DMF [63][67][69][71] or KOt-Bu in combination with additives such as bidentate diamine ligands [61][62][63][64][65], 18-crown-6 [70] or azobisisobutyronitrile (AIBN) [62][66]. Herein, we report the synthesis of
  • with 6 (Scheme 4d). After 16 h, 93% of 3a was formed, showing unambiguously that the reaction proceeds via 6 as an intermediate. We propose that KOt-Bu assists in α-bromination of 2a to form the intermediate 6 via single electron transfer (SET). Recent mechanistic work by Murphy and co-workers showed
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2017

Dialkyl dicyanofumarates and dicyanomaleates as versatile building blocks for synthetic organic chemistry and mechanistic studies

  • Grzegorz Mlostoń and
  • Heinz Heimgartner

Beilstein J. Org. Chem. 2017, 13, 2235–2251, doi:10.3762/bjoc.13.221

Graphical Abstract
  • disulfides and diselenides is explained as a redox process through a single-electron transfer (SET) mechanism with E-1a as the oxidizing reagent, which converted into a mixture of diastereoisomeric diethyl dicyanosuccinates 96 [72]. Very likely, an analogous SET mechanism governs also the reaction of E-1
PDF
Album
Review
Published 24 Oct 2017

Oxidative dehydrogenation of C–C and C–N bonds: A convenient approach to access diverse (dihydro)heteroaromatic compounds

  • Santanu Hati,
  • Ulrike Holzgrabe and
  • Subhabrata Sen

Beilstein J. Org. Chem. 2017, 13, 1670–1692, doi:10.3762/bjoc.13.162

Graphical Abstract
  • -workers in the year 2000 [26][27][28][29]. It oxidizes diverse functionalities such as amines, imines, alcohols etc. [30]. Later, it was demonstrated that IBX can also be used as a reagent for oxidative dehydrogenation of benzylic carbons in various aromatic systems via single electron transfer (SET) and
  • with the reaction of DDQ on the C4 H-atom of 27 and 28, respectively, to form the transition state E′ (path a). Alternatively it can also attack the H-atom at C5 to generate C′ (path b). A single electron transfer and subsequent H-abstraction on E′ or C′ lead to the formation of F′ or D′, respectively
  • isoquinoline 82 from diverse 1,2,3,4-tetrahydroquinolines 81 in moderate to good yield (Scheme 29). Ferrous chloride (FeCl2) acted as a single electron transfer agent in the presence of DMSO to facilitate the reaction. Metal-catalyzed oxidant induced dehydrogenation Our next discussion involved the oxidative
PDF
Album
Review
Published 15 Aug 2017

Kinetic analysis of mechanoradical formation during the mechanolysis of dextran and glycogen

  • Naoki Doi,
  • Yasushi Sasai,
  • Yukinori Yamauchi,
  • Tetsuo Adachi,
  • Masayuki Kuzuya and
  • Shin-ichi Kondo

Beilstein J. Org. Chem. 2017, 13, 1174–1183, doi:10.3762/bjoc.13.116

Graphical Abstract
  • microcrystalline cellulose powder through mechanocation polymerization with isobutyl vinyl ether in vacuum at 77 K [24]. The aforementioned mechanoanion was confirmed through tetracyanoethylene (TCNE) radical anion formation. The latter radical is produced by a single-electron transfer from the mechanoanion to
PDF
Album
Full Research Paper
Published 19 Jun 2017

The reductive decyanation reaction: an overview and recent developments

  • Jean-Marc R. Mattalia

Beilstein J. Org. Chem. 2017, 13, 267–284, doi:10.3762/bjoc.13.30

Graphical Abstract
  • reduction of radical probes (no rearranged products formed from 25d,l,m) and deuterium-labelling experiments (no deuterium incorporation using THF-d8 and quenching with D2O) discard the possibility of a single-electron transfer pathway. Other reductions suggest a hydride addition with formation of an iminyl
  • intermediate 64 via a β-hydride elimination from 63. A single-electron transfer (SET) to the nitrile oxidizes the complex at the metal center into 65 and generates an aryl radical. The electron can also be located in the ligand (non-innocent ligand, not represented in Scheme 21). Then, elimination of MgXCN and
  • NHC-boryl nitrile 74, EPR spectroscopy observations [122], and polar effects fit with this proposition. Neutral organic electron donors Powerful single-electron transfer reagents have been described. Kang et al. reported the decyanation of both malononitriles and α-cyanoesters using samarium(II
PDF
Album
Review
Published 13 Feb 2017

Direct arylation catalysis with chloro[8-(dimesitylboryl)quinoline-κN]copper(I)

  • Sem Raj Tamang and
  • James D. Hoefelmeyer

Beilstein J. Org. Chem. 2016, 12, 2757–2762, doi:10.3762/bjoc.12.272

Graphical Abstract
  • reactions and, more specifically, direct arylation have been the subject of intense interest. Mechanistic models appear to diverge along those favoring oxidative addition/reductive elimination via Cu(I)/Cu(III) versus proposals favoring a single electron transfer (SET) pathway [55][56]. In the base-promoted
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2016

Copper-catalyzed asymmetric sp3 C–H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst

  • Pierre Querard,
  • Inna Perepichka,
  • Eli Zysman-Colman and
  • Chao-Jun Li

Beilstein J. Org. Chem. 2016, 12, 2636–2643, doi:10.3762/bjoc.12.260

Graphical Abstract
  • , entries 7 and 8). A tentative reaction mechanism has been proposed in Scheme 3, in order to rationalize this arylation reaction. Upon visible light irradiation, [Ir(ppy)2(dtbbpy)]PF6 I was converted into an excited state II, Ir(III)* [11][33][34][35][36][37]. The THIQ undergoes a single electron transfer
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2016

Cp2TiCl/D2O/Mn, a formidable reagent for the deuteration of organic compounds

  • Antonio Rosales and
  • Ignacio Rodríguez-García

Beilstein J. Org. Chem. 2016, 12, 1585–1589, doi:10.3762/bjoc.12.154

Graphical Abstract
  • complexes catalyse α-deuteration of amines and alcohols [13] and palladium complexes catalyse the ortho-selective deuteration of arenes [14]. Also, SmI2/D2O-mediated the chemoselective synthesis of α,α-dideuterio alcohols directly from carboxylic acid under single-electron-transfer conditions [15]. However
  • water. This complex is a single electron transfer system (SET) that has an unpaired d-electron and a vacant site, allowing heteroatoms with free valence electrons to coordinate and undergo electron transfer through an inner-sphere mechanism to generate carbon radicals or intermediate titanaoxiranes
  • -ordination of water to Cp2TiCl might weakens the strength of the O–H bond. In this way a single electron transfer from titanium to oxygen might facilitate the HAT from the titanocene aqua-complex to the free radicals. Theoretical calculations supported that the coordination of water to Cp2TiIIICl weakens the
PDF
Album
Commentary
Published 25 Jul 2016

NeoPHOX – a structurally tunable ligand system for asymmetric catalysis

  • Jaroslav Padevět,
  • Marcus G. Schrems,
  • Robin Scheil and
  • Andreas Pfaltz

Beilstein J. Org. Chem. 2016, 12, 1185–1195, doi:10.3762/bjoc.12.114

Graphical Abstract
  • reaction indeed took place. While for iodides evidence for a radical single electron transfer process as the major pathway was found, the corresponding bromides and chlorides seemed to prefer an SN2 mechanism. Rossi et al. [21] showed that substitution products can be obtained in good yields from neopentyl
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

Synthesis of 2-oxindoles via 'transition-metal-free' intramolecular dehydrogenative coupling (IDC) of sp2 C–H and sp3 C–H bonds

  • Nivesh Kumar,
  • Santanu Ghosh,
  • Subhajit Bhunia and
  • Alakesh Bisai

Beilstein J. Org. Chem. 2016, 12, 1153–1169, doi:10.3762/bjoc.12.111

Graphical Abstract
  • bond [27][28][29][30], single electron transfer (SET) to a α-halo anilides followed by halide elimination [31][32], and the formation of an aryl radical followed by a 1,5-hydrogen atom translocation [33][34]. Out of these strategies, the initial two require specifically functionalized precursors such
  • skeleton such as calycanthine (22c) (Scheme 5) [78]. In all the cases, IDC was feasible with substrates having substituents at the carbon atom α- to the amides. This gave a clue for a radical-mediated process where a single electron transfer (SET) mechanism might be operating. A tentative mechanism has
  • –39% yield along with 43–52% of recovered starting material (Scheme 8) and no trace of C-iodide 24 was observed. These results suggest that, NIS and ICl also acts as oxidants and helping in a single electron transfer (SET) in the oxidative coupling reaction [87][88]. It is also well evident in the
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2016

Recent developments in copper-catalyzed radical alkylations of electron-rich π-systems

  • Kirk W. Shimkin and
  • Donald A. Watson

Beilstein J. Org. Chem. 2015, 11, 2278–2288, doi:10.3762/bjoc.11.248

Graphical Abstract
  • catalyst. The resultant stabilized alkyl radical then undergoes coupling with a nitronate anion, forging the C–C bond. Single electron transfer from the resultant radical anion to the Cu(II) halide results in the observed product while simultaneously reducing the metal center to regenerate the catalyst. In
PDF
Album
Review
Published 23 Nov 2015

Photoinduced 1,2,3,4-tetrahydropyridine ring conversions

  • Baiba Turovska,
  • Henning Lund,
  • Viesturs Lūsis,
  • Anna Lielpētere,
  • Edvards Liepiņš,
  • Sergejs Beljakovs,
  • Inguna Goba and
  • Jānis Stradiņš

Beilstein J. Org. Chem. 2015, 11, 2166–2170, doi:10.3762/bjoc.11.234

Graphical Abstract
  • the formation of the singlet state of 1*, is followed by single-electron transfer from 1* to 3O2 generating 1+• and O2− • in solution. Such reactions between strong nucleophiles and strong electrophiles, especially the annihilation reactions between ion radicals, have not been studied extensively
PDF
Album
Supp Info
Letter
Published 11 Nov 2015

C–H bond halogenation catalyzed or mediated by copper: an overview

  • Wenyan Hao and
  • Yunyun Liu

Beilstein J. Org. Chem. 2015, 11, 2132–2144, doi:10.3762/bjoc.11.230

Graphical Abstract
  • roles of both reaction medium and halogen source. Notably, attempts in the chlorination of the alkene C–H bond under identical atmosphere were not successful. In the reaction process, a single electron transfer (SET) from the aryl ring to the coordinated Cu(II) complex 3 to the Cu(I) species 4 was the
  • and 2-phenyl-1,3,4-oxadiazole were smoothly iodinated to provide iodoheteroarenes 18 (Scheme 10) [45]. As typical electron-enriched arenes, phenols and analogous arenes tend to undergo a single-electron transfer process [46], the property of these arenes also resulted in sound attention to their C–H
PDF
Album
Review
Published 09 Nov 2015

Metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines

  • Hongnan Sun,
  • Binbin Huang,
  • Run Lin,
  • Chao Yang and
  • Wujiong Xia

Beilstein J. Org. Chem. 2015, 11, 524–529, doi:10.3762/bjoc.11.59

Graphical Abstract
  • mechanism was proposed as shown in Scheme 4. Initially, aziridine 1a might participate in single-electron transfer (SET) with the persulfate anion to render the radical cation A [32][34]. Concerted ring opening and nucleophilic addition leads to amino radical intermediate B, which is converted to the
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2015
Other Beilstein-Institut Open Science Activities